MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Générateur MHDUn générateur MHD (magnétohydrodynamique) est un convertisseur MHD, qui transforme l'énergie cinétique d'un fluide conducteur directement en électricité. Le principe de base est fondamentalement le même que pour n'importe quel générateur électrique. Les deux types de générateur utilisent tous deux un inducteur (électro-aimant) générant un champ magnétique dans un induit. Dans le cas d'un générateur conventionnel, cet induit est solide : c'est une bobine constituée d'un enroulement de fil métallique.
Accélérateur MHDUn accélérateur MHD (magnétohydrodynamique) est un convertisseur MHD qui met en mouvement un fluide conducteur, grâce à un champ électrique et un champ magnétique combinés. Le principe de base est le même que celui d'un moteur électrique. Tous deux possèdent un inducteur (électroaimant) générant un champ magnétique dans un induit. Dans le cas d'un moteur conventionnel, cet induit est solide : c'est une bobine constituée d'un enroulement de fil métallique.
Fonction de répartitionEn théorie des probabilités, la fonction de répartition, ou fonction de distribution cumulative, d'une variable aléatoire réelle X est la fonction F_X qui, à tout réel x, associe la probabilité d’obtenir une valeur inférieure ou égale : Cette fonction est caractéristique de la loi de probabilité de la variable aléatoire.
Instabilité électrothermiqueL'instabilité électrothermique dite aussi instabilité de Velikhov ou instabilité d'ionisation a été prédite par la théorie par le physicien russe Evgeny Velikhov en 1962, prédiction qui fut confirmée expérimentalement dès 1965. C'est une « qui survient dans le plasma bitempérature d'un convertisseur MHD, soumis à un fort champ magnétique et en régime d’ionisation hors d'équilibre thermodynamique, c'est-à-dire lorsque la température électronique excède la température ionique (par exemple quand le « gaz d'électrons » est chauffé à kelvins, alors que les « lourds » (atomes et ions) restent « froids » aux alentours de ).
Fonction de répartition empiriqueEn statistiques, une fonction de répartition empirique est une fonction de répartition qui attribue la probabilité 1/n à chacun des n nombres dans un échantillon. Soit X,...,X un échantillon de variables iid définies sur un espace de probabilité , à valeurs dans , avec pour fonction de répartition F. La fonction de répartition empirique de l'échantillon est définie par : où est la fonction indicatrice de l'événement A. Pour chaque ω, l'application est une fonction en escalier, fonction de répartition de la loi de probabilité uniforme sur l'ensemble .
Fonction quantileEn probabilités, la fonction quantile est une fonction qui définit les quantiles. Soit X une variable aléatoire et F sa fonction de répartition, la fonction quantile est définie par pour toute valeur de , la notation désignant l’inverse généralisé à gauche de . Si F est une fonction strictement croissante et continue, alors est l'unique valeur de telle que . correspond alors à la fonction réciproque de , notée . En revanche, pour les lois discrètes, les fonctions de répartition sont toutes en escalier, d'où l'intérêt de la définition précédente.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).
Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.