Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Comparaison asymptotiqueEn mathématiques, plus précisément en analyse, la comparaison asymptotique est une méthode consistant à étudier la vitesse de croissance d'une fonction au voisinage d'un point ou à l'infini, en la comparant à celle d'une autre fonction considérée comme plus « simple ». Celle-ci est souvent choisie sur une échelle de référence, contenant en général au moins certaines fonctions dites élémentaires, en particulier les sommes et produits de polynômes, d'exponentielles et de logarithmes.
Processus de branchementEn théorie des probabilités, un processus de branchement est un processus stochastique formé par une collection de variables aléatoires. Les variables aléatoires d'un processus stochastique sont indexées par les nombres entiers naturels. Les processus de branchement ont été développés en premier lieu pour décrire une population dans laquelle chaque individu de la génération produit un nombre aléatoire d'individus dans la génération .
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.