Boucle infinieUne boucle infinie est, en programmation informatique, une boucle dont la condition de sortie n'a pas été définie ou ne peut pas être satisfaite. En conséquence, la boucle ne peut se terminer qu'à l'interruption du programme qui l'utilise. Il y a rarement un intérêt à programmer une boucle infinie. Une telle boucle ne permet pas de faire sortir un résultat, et accapare les ressources de l'ordinateur. Sur un système monotâche, une boucle infinie peut interdire à l'utilisateur toute autre action.
Bounds checkingIn computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking). A failed bounds check usually results in the generation of some sort of exception signal. As performing bounds checking during each use can be time-consuming, it is not always done.
Langage de programmationthumb|Fragment de code écrit dans le langage de programmation JavaScript. Un langage de programmation est un langage informatique destiné à formuler des algorithmes et produire des programmes informatiques qui les appliquent. D'une manière similaire à une langue naturelle, un langage de programmation est composé d'un alphabet, d'un vocabulaire, de règles de grammaire, de significations, mais aussi d'un environnement de traduction censé rendre sa syntaxe compréhensible par la machine.
Foreach loopIn computer programming, foreach loop (or for-each loop) is a control flow statement for traversing items in a collection. is usually used in place of a standard loop statement. Unlike other loop constructs, however, loops usually maintain no explicit counter: they essentially say "do this to everything in this set", rather than "do this times". This avoids potential off-by-one errors and makes code simpler to read. In object-oriented languages, an iterator, even if implicit, is often used as the means of traversal.
Gravitation quantique à bouclesLa gravitation quantique à boucles (loop quantum gravity en anglais) est une tentative de formuler une théorie de la gravitation quantique, et donc d'unifier la théorie de la relativité générale et les concepts de la physique quantique. Elle est fondée sur la quantification canonique directe de la relativité générale dans une formulation hamiltonienne (l'équation de Wheeler-DeWitt), les trois autres interactions fondamentales n'étant pas considérées dans un premier temps.
Générateur (informatique)En informatique, un générateur est une routine non transparente référentiellement, généralement sans argument. Comme son nom l'indique, elle sert à créer de nouveaux objets. Parmi les générateurs les plus classiques, on trouve les générateurs de nombres aléatoires. Un générateur suit le patron de conception itérateur, et permet en pratique de retourner un gros volume de données sans surcharger la mémoire vive, en la découpant en petits paquets. Certains générateurs parcourent virtuellement une liste infinie, définie algorithmiquement.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
MATLABMATLAB (« matrix laboratory ») est un langage de script émulé par un environnement de développement du même nom ; il est utilisé à des fins de calcul numérique. Développé par la société The MathWorks, MATLAB permet de manipuler des matrices, d'afficher des courbes et des données, de mettre en œuvre des algorithmes, de créer des interfaces utilisateurs, et peut s’interfacer avec d’autres langages comme le C, C++, Java, et Fortran.
Nombre harmoniqueEn mathématiques, le n-ième nombre harmonique est la somme des inverses des n premiers entiers naturels non nuls : Ce nombre rationnel est aussi égal à n fois l'inverse de la moyenne harmonique de ces entiers, ainsi qu'à la n-ième somme partielle de la série harmonique. Les nombres harmoniques ont été étudiés pendant l'Antiquité et sont importants dans plusieurs domaines de la théorie des nombres. Ils apparaissent dans de nombreux problèmes d'analyse combinatoire.
Proposition contraposéeEn logique, la contraposition est un type de raisonnement consistant à affirmer l'implication « si non B alors non A » à partir de l'implication « si A alors B ». L'implication « si non B alors non A » est appelée contraposée de « si A alors B ». Par exemple, la proposition contraposée de la proposition « s'il pleut, alors le sol est mouillé » est « si le sol n'est pas mouillé, alors il ne pleut pas ». Considérons l'exemple suivant :S'il pleut, alors le sol est mouillé.