Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Surface de RiemannEn géométrie différentielle et géométrie analytique complexe, une surface de Riemann est une variété complexe de dimension 1. Cette notion a été introduite par Bernhard Riemann pour prendre en compte les singularités et les complications topologiques qui accompagnent certains prolongements analytiques de fonctions holomorphes. Par oubli de structure, une surface de Riemann se présente comme une variété différentielle réelle de dimension 2, d'où le nom surface. Elles ont été nommées en hommage au mathématicien allemand Bernhard Riemann.
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.
GéodésiqueEn géométrie, une géodésique est la généralisation d'une ligne droite du plan ou de l'espace euclidien, au cadre des surfaces, ou plus généralement des variétés ou des espaces métriques. Elles sont étroitement liées à la notion de plus court chemin relativement à un calcul de distance sur un tel espace. Ainsi, le plus court chemin (ou les plus courts chemins, s'il en existe plusieurs), entre deux points est toujours une géodésique. Mais plus précisément, on appelle géodésique une courbe qui, à l'échelle locale, relie les points en minimisant la distance.
Programmation orientée objetLa programmation orientée objet (POO), ou programmation par objet, est un paradigme de programmation informatique. Elle consiste en la définition et l'interaction de briques logicielles appelées objets ; un objet représente un concept, une idée ou toute entité du monde physique, comme une voiture, une personne ou encore une page d'un livre. Il possède une structure interne et un comportement, et il sait interagir avec ses pairs.
Théorème de l'application conformeEn mathématiques, et plus précisément en analyse complexe, le théorème de l'application conforme, dû à Bernhard Riemann, assure que toutes les parties ouvertes simplement connexes du plan complexe qui ne sont ni vides ni égales au plan tout entier sont conformes entre elles. Le théorème fut énoncé (sous l'hypothèse plus forte d'une frontière formés d'arcs différentiables) par Bernhard Riemann dans sa thèse, en 1851.
Héritage (informatique)En programmation orientée objet, l’héritage est un mécanisme qui permet, lors de la déclaration d’une nouvelle classe, d'y inclure les caractéristiques d’une autre classe. L'héritage établit une relation de généralisation-spécialisation qui permet d'hériter dans la déclaration d’une nouvelle classe (appelée classe dérivée, classe fille, classe enfant ou sous-classe) des caractéristiques (propriétés et méthodes) de la déclaration d'une autre classe (appelée classe de base, classe mère, classe parent ou super-classe).
Interface (programmation orientée objet)En programmation orientée objet, une interface est un ensemble de signatures de méthodes publiques d'un objet. Il s'agit donc d'un ensemble de méthodes accessibles depuis l'extérieur d'une classe, par lesquelles on peut modifier un objet, ou plus généralement communiquer avec lui. Pour rappel, la différenciation entre méthodes publiques et méthodes privées introduit une abstraction qui : empêche le programmeur d'application (qui emploie une classe) de manipuler l'objet de façon indue, puisque les seules modifications possibles d'une instance sont celles indiquées comme publiques par le concepteur de la classe ; permet au programmeur de la classe, de modifier l'implémentation interne de ces méthodes de manière transparente.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.
Espace de TeichmüllerEn mathématiques, l'espace de Teichmüller d'une surface (réelle) topologique (ou différentielle) , est un espace qui paramétrise des structures complexes sur à l'action des homéomorphismes isotopes à l'identité près. Les espaces Teichmüller portent le nom d'Oswald Teichmüller. Chaque point d'un espace de Teichmüller peut être considérée comme une classe d'isomorphismes de surfaces de Riemann "marquées", où un "marquage" est une classe d'isotopie d'homéomorphismes de sur lui-même.