Groupe de WeylEn mathématiques, et en particulier dans la théorie des algèbres de Lie, le groupe de Weyl d'un système de racines , nommé ainsi en hommage à Hermann Weyl, est le sous-groupe du groupe d'isométries du système de racines engendré par les réflexions orthogonales par rapport aux hyperplans orthogonaux aux racines. Le système de racines de est constitué des sommets d'un hexagone régulier centré à l'origine. Le groupe complet des symétries de ce système de racines est par conséquent le groupe diédral d'ordre 12.
Série génératriceEn mathématiques, et notamment en analyse et en combinatoire, une série génératrice (appelée autrefois fonction génératrice, terminologie encore utilisée en particulier dans le contexte de la théorie des probabilités) est une série formelle dont les coefficients codent une suite de nombres (ou plus généralement de polynômes) ; on dit que la série est associée à la suite. Ces séries furent introduites par Abraham de Moivre en 1730, pour obtenir des formules explicites pour des suites définies par récurrence linéaire.
Fonction génératrice des momentsEn théorie des probabilités et en statistique, la fonction génératrice des moments d'une variable aléatoire est la fonction M définie par pour tout réel t tel que cette espérance existe. Cette fonction, comme son nom l'indique, est utilisée afin d'engendrer les moments associés à la distribution de probabilités de la variable aléatoire .
Lie algebra extensionIn the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension e is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.
Transformée de HadamardLa transformée de Hadamard (aussi connue sous le nom de « transformée de Walsh-Hadamard ») est un exemple d'une classe généralisée d'une transformée de Fourier. Elle est nommée d'après le mathématicien français Jacques Hadamard et effectue une opération linéaire et involutive avec une matrice orthogonale et symétrique sur 2 nombres réels (ou complexes, bien que les matrices utilisées possèdent des coefficients réels). Ces matrices sont des matrices de Hadamard.
Fonction génératrice des probabilitésEn mathématiques, et plus particulièrement en théorie des probabilités, la fonction génératrice des probabilités (ou fonction génératrice des moments factoriels) d'une variable aléatoire (à valeurs dans les entiers naturels) est la série entière associée à la fonction de masse de cette variable aléatoire. La fonction génératrice des probabilités est utile car elle permet de caractériser entièrement la fonction de masse. La fonction génératrice des probabilités est usuellement identifiée à sa somme.
High dynamic rangeHigh dynamic range (HDR) is a dynamic range higher than usual, synonyms are wide dynamic range, extended dynamic range, expanded dynamic range. The term is often used in discussing the dynamic range of various signals such as s, videos, audio or radio. It may apply to the means of recording, processing, and reproducing such signals including analog and digitized signals. The term is also the name of some of the technologies or techniques allowing to achieve high dynamic range images, videos, or audio.
Formule des caractères de WeylEn théorie des représentations, la formule des caractères de Weyl est une description des caractères des représentations irréductibles des groupes de Lie compacts en fonction de leurs plus haut poids. Elle a été prouvée par Hermann Weyl. Il existe une formule étroitement liée pour le caractère d'une représentation irréductible d'une algèbre de Lie semi-simple. Dans l'approche de Weyl de la théorie des représentations des groupes de Lie compacts connexes, la preuve de la formule des caractères est une étape clé pour prouver que chaque élément entier dominant apparaît effectivement comme le plus haut poids d'une représentation irréductible.
Fonction porteLa fonction porte, généralement notée Π, est la fonction indicatrice de l'intervalle réel [–1/2, 1/2], c'est-à-dire la fonction mathématique par laquelle un nombre réel a une nulle, sauf s'il est compris entre –1/2 et 1/2, auquel cas son image vaut 1. Son graphe a une forme similaire à celle d'une porte, d'où son nom. La fonction porte , définie sur les réels et à valeurs dans , est définie par : Par généralisation, on appelle également fonction porte toute fonction déduite par translation et/ou dilatation de la fonction définie ci-dessus.
Weyl equationIn physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).