Dualité de Pontriaguinevignette|La transformée de Fourier En mathématiques, notamment en analyse harmonique et dans la théorie des groupes topologiques, la dualité de Pontriaguine explique les principales propriétés de la transformée de Fourier.
Figures géométriques arabesLes figures (ou motifs) géométriques constituent un motif ornemental récurrent de l'art mauresque (et plus particulièrement de la décoration des maisons de style maure). Les frises sont composées de merlons échelonnés en ligne horizontale. Les pannonceaux de mosaïque répètent en rythme un ou deux motifs principaux, qui s'imbriquent en alternance. Les alicatados, terme castillan, désignent des ensembles décoratifs de céramique vitrifiée qui sont appliqués sur les façades intérieures des palais.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Design rule checkingIn electronic design automation, a design rule is a geometric constraint imposed on circuit board, semiconductor device, and integrated circuit (IC) designers to ensure their designs function properly, reliably, and can be produced with acceptable yield. Design rules for production are developed by process engineers based on the capability of their processes to realize design intent. Electronic design automation is used extensively to ensure that designers do not violate design rules; a process called design rule checking (DRC).
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Complexité dans le pire des casEn informatique, la complexité dans le pire des cas, ou complexité dans le cas le plus défavorable, mesure la complexité (par exemple en temps ou en espace) d'un algorithme dans le pire des cas d'exécution possibles. Elle est exprimée comme une fonction de la taille de l'entrée de l'algorithme. Implicitement, on cherche à construire des algorithmes s'exécutant en utilisant le moins de ressources possible (e.g. le plus vite possible), et il s'agit par conséquent d'une borne supérieure des ressources requises par l'algorithme.
Transformation de Fourier rapideLa transformation de Fourier rapide (sigle anglais : FFT ou fast Fourier transform) est un algorithme de calcul de la transformation de Fourier discrète (TFD). Sa complexité varie en O(n log n) avec le nombre n de points, alors que la complexité de l’algorithme « naïf » s'exprime en O(n). Ainsi, pour n = , le temps de calcul de l'algorithme rapide peut être 100 fois plus court que le calcul utilisant la formule de définition de la TFD.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.