Fractional Fourier transformIn mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition.
Théorème d'inversion de FourierEn mathématiques, le théorème d'inversion de Fourier dit que pour de nombreux types de fonctions, il est possible de retrouver une fonction à partir de sa transformée de Fourier. En traitement du signal, on pourrait dire que la connaissance de toutes les informations d'amplitude et de phase des ondes constituant un signal permet précisément de reconstruire ce signal.
Transformée de Fourier quantiqueEn informatique quantique, la transformée de Fourier quantique (TFQ) est une transformation linéaire sur des bits quantiques, et est l'analogie quantique de la transformée de Fourier discrète. La transformée de Fourier quantique est l'un des nombreux algorithmes quantiques, qui incluent notamment l'algorithme de Shor qui permet de factoriser et de calculer le logarithme discret, l'algorithme d'estimation de phase quantique qui estime les valeurs propres d'un opérateur unitaire et les algorithmes traitant du problème de sous-groupe caché .
Spectral leakageThe Fourier transform of a function of time, s(t), is a complex-valued function of frequency, S(f), often referred to as a frequency spectrum. Any linear time-invariant operation on s(t) produces a new spectrum of the form H(f)•S(f), which changes the relative magnitudes and/or angles (phase) of the non-zero values of S(f). Any other type of operation creates new frequency components that may be referred to as spectral leakage in the broadest sense. Sampling, for instance, produces leakage, which we call aliases of the original spectral component.
Algorithme de KaratsubaEn informatique, l'algorithme de Karatsuba est un algorithme pour multiplier rapidement deux nombres de n chiffres avec une complexité temporelle en O(n) ≈ O(n) au lieu de O(n) pour la méthode naïve. Il a été développé par Anatolii Alexevich Karatsuba en 1960 et publié en 1962 . Pour multiplier deux nombres de n chiffres, la méthode naïve multiplie chaque chiffre du multiplicateur par chaque chiffre du multiplicande. Cela exige donc n produits de deux chiffres. Le temps de calcul est en O(n2).
Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Pixelthumb|upright=1.4|Image numérique dont une portion est très agrandie. Les pixels apparaissent ici comme des petits carrés. Le pixel, souvent abrégé p ou px, est l'unité de base de la définition d'une matricielle. Ce mot provient de la locution anglaise picture element, qui signifie « élément d'image ». Le pixel est l'unité minimale adressable par le contrôleur vidéo. C'est aussi l'unité utilisée pour spécifier les définitions d'affichage (largeur × hauteur).
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Transformée en cosinus discrèteLa transformée en cosinus discrète ou TCD (de l'anglais : DCT ou Discrete Cosine Transform) est une transformation proche de la transformée de Fourier discrète (DFT). Le noyau de projection est un cosinus et crée donc des coefficients réels, contrairement à la DFT, dont le noyau est une exponentielle complexe et qui crée donc des coefficients complexes. On peut cependant exprimer la DCT en fonction de la DFT, qui est alors appliquée sur le signal symétrisé.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.