Bifurcation de HopfDans la théorie des bifurcations, une bifurcation de Hopf ou de Poincaré–Andronov–Hopf, des noms de Henri Poincaré, Eberhard Hopf, et Aleksandr Andronov, est une bifurcation locale dans laquelle un point fixe d'un système dynamique perd sa stabilité tandis qu'une paire de valeurs propres complexes conjuguées de la linéarisation autour du point fixe franchissent l'axe imaginaire du plan complexe. Pour un tour d'horizon plus général sur les bifurcations de Hopf et leurs applications notamment en physique et en électronique, voir.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Fluide incompressibleUn fluide incompressible est un fluide dont le volume est considéré comme constant quelle que soit la pression qu'il subit, tout fluide étant en réalité sensible à la pression. Par nature, tous les fluides sont compressibles, certains plus que d'autres, et en phase gazeuse considérablement plus qu'en phase liquide. La compressibilité d'un fluide mesure la variation de volume d'une certaine quantité de ce fluide lorsqu'il est soumis à une pression extérieure.
Loi de StokesLa loi de Stokes, nommée en l'honneur de George Stokes (1819 – 1903), est une loi donnant la force de traînée hydrodynamique s'exerçant sur une sphère en déplacement dans un fluide. Si le nombre de Reynolds est très inférieur à 1 (écoulement rampant) et si la sphère est suffisamment loin de tout autre corps, de tout obstacle ou paroi latérale (on considère une paroi éloignée d'au moins dix fois le rayon de la sphère), alors la force de traînée hydrodynamique qui s'exerce sur une sphère de diamètre est : où est la viscosité dynamique du fluide (en ) et le diamètre de la sphère.
Nombre de StrouhalLe nombre de Strouhal est un nombre sans dimension décrivant les mécanismes de circulation oscillante. Ce nombre porte le nom de Vincent Strouhal, physicien tchèque. Physiquement, il représente le rapport du temps d'advection et du temps caractéristique de l'instationnarité. Si , l'écoulement est dit quasi stationnaire. En 1878, en étudiant les notes émises par un fil tendu soumis au vent, le physicien tchèque Vincent Strouhal fut le premier à remarquer la relation entre la fréquence du son et le quotient de la vitesse du vent par le diamètre du fil.
PressionLa pression est une grandeur physique qui traduit les échanges de quantité de mouvement dans un système thermodynamique, et notamment au sein d'un solide ou d'un fluide. Elle est définie classiquement comme l'intensité de la force qu'exerce un fluide par unité de surface. C'est une grandeur scalaire (ou tensorielle) intensive. Dans le Système international d'unités elle s'exprime en pascals, de symbole Pa. L'analyse dimensionnelle montre que la pression est homogène à une force surfacique ( ) comme à une énergie volumique ( ).
Théorie des bifurcationsLa théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Exact solutions in general relativityIn general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding a Lorentzian manifold equipped with tensor fields modeling states of ordinary matter, such as a fluid, or classical non-gravitational fields such as the electromagnetic field.
Écoulement de PoiseuilleLa loi de Poiseuille, également appelée loi de Hagen-Poiseuille, décrit l'écoulement laminaire (c'est-à-dire à filets de liquide parallèles) d'un liquide visqueux, incompressible, dans une conduite cylindrique. Découverte indépendamment en 1840 par le médecin et physicien français Jean-Léonard-Marie Poiseuille et par l’ingénieur prussien Gotthilf Hagen, elle constitue la première tentative de dépasser la notion de vitesse moyenne d'un écoulement, jusque-là en usage (cf. formules de Chézy et de Prony).