StatistiqueLa statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous. C'est à la fois une branche des mathématiques appliquées, une méthode et un ensemble de techniques. ce qui permet de différencier ses applications mathématiques avec une statistique (avec une minuscule). Le pluriel est également souvent utilisé pour la désigner : « les statistiques ».
Indicateur de tendance centralevignette|Diagramme d'une loi binomiale avec des indicateurs de tendance centrale (comme la moyenne au centre). En statistique, un indicateur de tendance centrale est une valeur résumant une série statistique pour une variable quantitative ou ordinale. Les deux principaux sont la moyenne et la médiane, mais on trouve parfois aussi la valeur centrale (moyenne des valeurs minimale et maximale) ou le mode. Ce dernier n’étant pas nécessairement unique pour une série statistique, sa définition ne s’obtient pas directement comme une fonction des termes de la série.
Ordre moyen d'une fonction arithmétiqueEn théorie des nombres, un ordre moyen d'une fonction arithmétique f est une fonction «simple» g approchant f en moyenne. Plus précisément un ordre moyen de f est une fonction g réelle ou complexe, si possible continue et monotone, telle qu'on ait : Autrement dit, les moyennes arithmétiques de f et g entre 1 et n sont des fonctions asymptotiquement équivalentes. Une telle fonction g n'est bien entendu pas unique. vignette|upright=1.
Fonction additive (arithmétique)En théorie des nombres, une fonction additive f est une fonction arithmétique (donc définie sur l'ensemble des entiers strictement positifs à valeurs dans l'ensemble des nombres complexes ) telle que : pour tous entiers a et b > 0 premiers entre eux, f(ab) = f(a) + f(b) (en particulier, f(1) = 0). On dit que f est (une fonction additive) réelle si elle est uniquement à valeurs dans l'ensemble des nombres réels . Une fonction arithmétique f est dite complètement additive lorsque : Pour tous entiers a et b > 0, f(ab) = f(a) + f(b), même si a et b ne sont pas premiers entre eux.
Fonction somme des puissances k-ièmes des diviseursEn mathématiques, la fonction "somme des puissances k-ièmes des diviseurs", notée , est la fonction multiplicative qui à tout entier n > 0 associe la somme des puissances -ièmes des diviseurs positifs de n, où est un nombre complexe quelconque : La fonction est multiplicative, c'est-à-dire que, pour tous entiers et n premiers entre eux, . En effet, est le produit de convolution de deux fonctions multiplicatives : la fonction puissance -ième et la fonction constante 1.
Fonction de MöbiusEn mathématiques, la fonction de Möbius désigne généralement une fonction multiplicative particulière, définie sur les entiers strictement positifs et à valeurs dans l'ensemble {–1, 0, 1}. Elle intervient dans la formule d'inversion de Möbius. Elle est utilisée dans des branches différentes des mathématiques. Vue sous un angle élémentaire, la fonction de Möbius permet certains calculs de dénombrement, en particulier pour l'étude des p-groupes ou en théorie des graphes.
Statistique descriptiveLa statistique descriptive est la branche des statistiques qui regroupe les nombreuses techniques utilisées pour décrire un ensemble relativement important de données. L'objectif de la statistique descriptive est de décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses. Toute description d'un phénomène nécessite d'observer ou de connaître certaines choses sur ce phénomène. Les observations disponibles sont toujours constituées d'ensemble d'observations synchrones.
Computable functionComputable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines.
ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Série de DirichletEn mathématiques, une série de Dirichlet est une série f(s) de fonctions définies sur l'ensemble C des nombres complexes, et associée à une suite (a) de nombres complexes de l'une des deux façons suivantes : Ici, la suite (λ) est réelle, positive, strictement croissante et non bornée. Le domaine de convergence absolue d'une série de Dirichlet est soit un demi-plan ouvert de C, limité par une droite dont tous les points ont même abscisse, soit l'ensemble vide, soit C tout entier. Le domaine de convergence simple est de même nature.