Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Axiomes des probabilitésEn théorie des probabilités, les axiomes de probabilités, également appelés axiomes de Kolmogorov du nom d'Andreï Nikolaievitch Kolmogorov qui les a développés, désignent les propriétés que doit vérifier une application afin de formaliser l'idée de probabilité. Ces propriétés peuvent être résumées ainsi : si est une mesure sur un espace mesurable , alors doit être un espace de probabilité. Le théorème de Cox fournit une autre approche pour formaliser les probabilités, privilégiée par certains bayésiens.
Micro-ondethumb|Expérience de transmission par micro-ondes (Laboratoire de la NASA). vignette|Spectre des rayonnements électromagnétiques en fonction de leur longueur d'onde. On retrouve notamment les micro-ondes, possédant une longueur d'onde entre et . Les micro-ondes ou microondes sont des rayonnements électromagnétiques de longueur d'onde intermédiaire entre l'infrarouge et les ondes de radiodiffusion. Le terme de micro-onde provient du fait que ces ondes ont une longueur d'onde plus courte que celles de la bande VHF, utilisée par les radars pendant la Seconde Guerre mondiale.
Four à micro-ondesUn four à micro-ondes, ou plus simplement un micro-ondes ou même un microonde, est un appareil électroménager utilisé principalement pour le chauffage et la cuisson rapide d'aliments, par l'agitation des molécules d'eau qu'ils contiennent, sous l'effet d'un rayonnement micro-onde. Contrairement à ce qu'affirment certaines croyances populaires, cuire ou chauffer sa nourriture au micro-ondes n'est pas nocif pour la santé et ne retire pas de nutriments aux aliments. vignette|Intérieur d’un four à micro-ondes.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Susceptibilité magnétiqueLa susceptibilité magnétique désigne une propriété d'un matériau qui caractérise la faculté de celui-ci à s'aimanter sous l'effet d'une excitation magnétique émise par un champ. C'est une grandeur sans dimension qu'on note en général par le symbole , ou simplement s'il n'y a pas d'ambiguïté avec la susceptibilité électrique dans le texte. Tout matériau est composé au niveau microscopique d'atomes liés ensemble, chacun de ces atomes pouvant être vu comme un aimant élémentaire si l'on ne s'intéresse qu'aux propriétés magnétiques.
Géométrie non euclidienneLa géométrie non euclidienne (GNE) est, en mathématiques, une théorie géométrique ayant recours aux axiomes et postulats posés par Euclide dans les Éléments, sauf le postulat des parallèles. Les différentes géométries non euclidiennes sont issues initialement de la volonté de démontrer la proposition du cinquième postulat, qui apparaissait peu satisfaisant en tant que postulat car trop complexe et peut-être redondant avec les autres postulats).
Faisceau hertzienvignette|Tour hertzienne du Gemeindealpe, Autriche. vignette|Relais hertzien. Un faisceau hertzien est un système de transmission de signaux mono-directionnel ou bi-directionnel et généralement permanent, entre deux sites géographiques fixes. Il exploite le support d'ondes radioélectriques, par des fréquences porteuses allant de (gamme des micro-ondes), focalisées et concentrées grâce à des antennes directives.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.