Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
LogistiqueLa logistique est l'activité qui a pour objet de gérer les flux physiques, et les données (informatives, douanières et financières) s'y rapportant, dans le but de mettre à disposition les ressources correspondant à des besoins (plus ou moins) déterminés en respectant les conditions économiques et légales prévues, le degré de qualité de service attendu, les conditions de sécurité et de sûreté réputées satisfaisantes. Pour le Council of Supply Chain Management Professionnals, la logistique se définit comme : .
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Expression de forme ferméeEn mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence. On emploie parfois le terme formule à la place du terme expression : formule de forme fermée, formule explicite, formule de forme close, etc. Le plus souvent, cette terminologie s'emploie pour des solutions d'équations ou de systèmes d'équations.
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Ingénierie des transportsvignette| L'ingénierie de ce rond-point à Bristol, en Angleterre, tente de faire circuler le trafic librement. L'ingénierie des transports est l'application de principes technologiques et scientifiques à la planification, la conception, l'exploitation et la gestion des installations destinés aux moyens de transport afin de garantir la sécurité, l'efficacité, la rapidité, le confort, la commodité du transport de personnes et de marchandises. Parmi les sous-disciplines de l'ingénierie des transports on peut citer l'ingénierie ferroviaire et l'ingénierie marine.
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Problème de tournées de véhiculesvignette|Figure illustrant une des solutions d'un problème de tournées avec un dépôt central et 3 véhicules disponibles. Le problème de tournées de véhicules (aussi appelé VRP pour Vehicle Routing Problem) est une classe de problèmes de recherche opérationnelle et d'optimisation combinatoire. Il s'agit de déterminer les tournées d'une flotte de véhicules afin de livrer une liste de clients, ou de réaliser des tournées d'interventions (maintenance, réparation, contrôles) ou de visites (visites médicales, commerciales).
Loi de StudentEn théorie des probabilités et en statistique, la loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ. Elle est notamment utilisée pour les tests de Student, la construction d'intervalle de confiance et en inférence bayésienne. Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ à k degrés de liberté.