Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Diagramme de Feynmanupright=1.2|vignette|Diagramme de Feynman : un électron et un positron (e- et e+) s'annihilent en produisant un photon virtuel (en bleu) qui devient une paire quark-antiquark (q et q̄), puis l'antiquark émet un gluon (en vert). Le temps est ici en abscisse, de gauche à droite ; l'espace est en ordonnée.Les flèches symbolisent le type de l'objet (particules ">", vers le futur, et anti particule "
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Transformation de LaplaceEn mathématiques, la transformation de Laplace est une transformation intégrale qui à une fonction f — définie sur les réels positifs et à valeurs réelles — associe une nouvelle fonction F — définie sur les complexes et à valeurs complexes — dite transformée de Laplace de f. L'intérêt de la transformation de Laplace vient de la conjonction des deux faits suivants : De nombreuses opérations courantes sur la fonction originale f se traduisent par une opération algébrique sur la transformée F.
Algorithme de ShorEn arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
StochastiqueLe mot stochastique est synonyme d', en référence au hasard et s’oppose par définition au déterminisme. Stochastique est un terme d'origine grecque qui signifie « basé sur la conjecture ». En français, il est couramment utilisé pour décrire des phénomènes aléatoires ou imprévisibles. Dans les mathématiques et la statistique, « stochastique » fait référence à des processus qui sont déterminés par des séquences de mouvements aléatoires. Cela inclut tout ce qui est aléatoire ou imprévisible en fonction des informations actuellement disponibles.
Exponentielle de base aEn analyse réelle, l'exponentielle de base est la fonction notée exp qui, à tout réel x, associe le réel a. Elle n'a de sens que pour un réel a strictement positif. Elle étend à l'ensemble des réels la fonction, définie sur l'ensemble des entiers naturels, qui à l'entier n associe a. C'est donc la version continue d'une suite géométrique. Elle s'exprime à l'aide des fonctions usuelles exponentielle et logarithme népérien sous la forme Elle peut être définie comme la seule fonction continue sur R, prenant la valeur a en 1 et transformant une somme en produit.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Transformation de Fourierthumb|Portrait de Joseph Fourier. En mathématiques, plus précisément en analyse, la transformation de Fourier est une extension, pour les fonctions non périodiques, du développement en série de Fourier des fonctions périodiques. La transformation de Fourier associe à toute fonction intégrable définie sur R et à valeurs réelles ou complexes, une autre fonction sur R appelée transformée de Fourier dont la variable indépendante peut s'interpréter en physique comme la fréquence ou la pulsation.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.