Quasiprobability distributionA quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states.
Opérateur (mathématiques)En mathématiques et en physique théorique, un opérateur est une application entre deux espaces vectoriels topologiques. Soient E et F deux espaces vectoriels topologiques. Un opérateur O est une application de E dans F : Opérateur linéaire Un opérateur est linéaire si et seulement si : où K est le corps des scalaires de E et F. Lorsque E est un -espace vectoriel, et que (c'est un corps), un opérateur est une forme linéaire sur E.
Relation (mathématiques)Une relation entre objets mathématiques d'un certain domaine est une propriété qu'ont, ou non, entre eux certains de ces objets ; ainsi la relation d'ordre strict, notée « < », définie sur N l'ensemble des entiers naturels : 1 < 2 signifie que 1 est en relation avec 2 par cette relation, et on sait que 1 n'est pas en relation avec 0 par celle-ci. Une relation est très souvent une relation binaire, définie sur un ensemble comme la relation d'ordre strict sur N, ou entre deux ensembles.
Variables conjuguées (formalisme hamiltonien)Dans le formalisme hamiltonien de la physique, deux variables sont dites conjuguées si l'une est la dérivée de l'action par rapport à l'autre. Le produit des deux variables conjuguées est alors homogène à une action et s'exprime, dans le Système international (SI) d'unités, en joule seconde (J·s). Par exemple, l'énergie et le temps sont deux variables conjuguées car le produit d'une énergie par une durée est homogène à une action.
Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
Relation ternaireEn mathématiques, une relation ternaire est une relation d'arité 3, de même que les relations binaires, plus courantes, sont d'arité 2. Formellement, une relation ternaire est donc représentée par son graphe, qui est une partie du produit X × Y × Z de trois ensembles X, Y et Z. Le graphe d'une fonction de deux variables f : X × Y → Z, c'est-à-dire l'ensemble des triplets de la forme (x, y, f(x, y)), représente la relation ternaire R définie par : R(x, y, z) si z est l' de (x, y) par f.
Distribution de Wigner-VilleLa distribution de Wigner-Ville, des noms de Eugene Wigner et Jean Ville. Elle a été introduite par Eugene Wigner en 1932 dans le cadre de la physique quantique pour introduire des corrections quantiques à la physique statistique. Son objectif était de remplacer dans l'équation de Schrödinger la fonction d'onde par une densité de probabilité dans l'espace des phases. Cette fonction est par construction à valeurs réelles. Mais du fait de la redondance de la base de représentation, telle qu'exprimée par les relations d'incertitude, cette fonction peut prendre des valeurs négatives.
Relation réflexiveEn mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.
Phase (onde)En physique, la d'une fonction périodique est l'argument de cette fonction, noté souvent . Elle est définie modulo la période, c'est-à-dire à un nombre entier de périodes près. Par exemple, la hauteur d'un pendule oscillant est une fonction sinusoïdale de la forme . La phase vérifie alors à près, avec la pulsation et la phase initiale. La phase est une grandeur sans dimension. Cependant, dans le cas d'un signal sinusoïdal, on attribue l'unité radian ou degré à la phase.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.