Linear algebraic groupIn mathematics, a linear algebraic group is a subgroup of the group of invertible matrices (under matrix multiplication) that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of . Many Lie groups can be viewed as linear algebraic groups over the field of real or complex numbers. (For example, every compact Lie group can be regarded as a linear algebraic group over R (necessarily R-anisotropic and reductive), as can many noncompact groups such as the simple Lie group SL(n,R).
Corps commutatifvignette|Corps commutatif (pour n premier) En mathématiques, un corps commutatif (parfois simplement appelé corps, voir plus bas, ou parfois appelé champ) est une des structures algébriques fondamentales de l'algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles les additions, soustractions, multiplications et divisions. Plus précisément, un corps commutatif est un anneau commutatif dans lequel l'ensemble des éléments non nuls est un groupe commutatif pour la multiplication.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Transformation naturelleEn théorie des catégories, une transformation naturelle permet de transformer un foncteur en un autre tout en respectant la structure interne (c'est-à-dire la composition des morphismes) des catégories considérées. On peut ainsi la voir comme un morphisme de foncteurs. Soient et deux catégories, F et G deux foncteurs covariants de dans .
Nombre algébriqueUn nombre algébrique, en mathématiques, est un nombre complexe solution d'une équation polynomiale à coefficients dans le corps des rationnels (autrement dit racine d'un polynôme non nul à coefficients rationnels). Les nombres entiers et rationnels sont algébriques, ainsi que toutes les racines de ces nombres. Les nombres complexes qui ne sont pas algébriques, comme π et e (théorème de Lindemann-Weierstrass), sont dits transcendants. L'étude de ces nombres, de leurs polynômes minimaux et des corps qui les contiennent fait partie de la théorie de Galois.
Superalgèbre de LieUne superalgèbre de Lie est une extension de la notion d'algèbre de Lie par l'ajout d'une Z-graduation. Cette graduation sépare la superalgèbre en la somme directe d'une partie paire et d'une partie impaire. Cette structure est utilisée en physique théorique pour décrire la supersymétrie. Les éléments de l'algèbre peuvent y être représentés par des opérateurs différentiels. Dans la plupart de ces théories, les éléments pairs correspondent aux bosons et les éléments impairs aux fermions.
Young symmetrizerIn mathematics, a Young symmetrizer is an element of the group algebra of the symmetric group, constructed in such a way that, for the homomorphism from the group algebra to the endomorphisms of a vector space obtained from the action of on by permutation of indices, the image of the endomorphism determined by that element corresponds to an irreducible representation of the symmetric group over the complex numbers. A similar construction works over any field, and the resulting representations are called Specht modules.
Verma moduleVerma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight , where is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds.
Groupe parfaitEn théorie des groupes (mathématiques), un groupe est dit parfait s'il est égal à son dérivé. Dans ce qui suit, le dérivé d'un groupe G sera noté D(G). Si un groupe G est parfait, l'image de G par un homomorphisme est un groupe parfait. En particulier, tout groupe quotient d'un groupe parfait est parfait.En effet, si f est un homomorphisme d'un groupe G (quelconque) dans un autre groupe, on a toujours D(f(G)) = f(D(G)). Si un groupe parfait G est sous-groupe d'un groupe H, il est contenu dans le dérivé de H.
Fonction symétriqueEn mathématiques, une fonction symétrique est une fonction invariante par permutation de ses variables. Le cas le plus fréquent est celui d'une fonction polynomiale symétrique, donnée par un polynôme symétrique. Une fonction en n variables est symétrique si pour toute permutation s de l'ensemble d'indices {1, ... ,n}, l'égalité suivante est vérifiée : Pour n = 1, toute fonction est symétrique. Pour n = 2, la fonction est symétrique, alors que la fonction ne l'est pas. Une équation est une équation symétrique lorsque la fonction est symétrique.