Laplacien discretEn mathématiques, le laplacien discret est une analogie du laplacien continu adaptée au cas de problèmes discret (graphes, par exemple). Il est notamment employé en analyse numérique, par exemple dans le cadre de la résolution de l'équation de la chaleur par la méthode des différences finies, ou en pour la détection de contours. Soit une fonction réelle de deux variables réelles et et . On définit le laplacien discret de comme la somme des dérivées secondes discrètes selon et selon , soit : L'exemple précédent est décrit dans une grille régulière cartésienne de dimension (plan).
Théorème de KirchhoffDans le domaine de la théorie des graphes, le théorème de Kirchhoff, aussi appelé matrix-tree theorem, nommé d'après le physicien Gustav Kirchhoff, est un théorème donnant le nombre exact d'arbres couvrants pour un graphe non orienté quelconque. C'est une généralisation de la formule de Cayley qui donne ce résultat pour les graphes complets non orientés. Le théorème de Kirchhoff s'appuie sur la notion de matrice laplacienne, définie elle-même comme la différence entre la matrice des degrés et la matrice d'adjacence du graphe.
Speeded Up Robust FeaturesSpeeded Up Robust Features (SURF), que l'on peut traduire par caractéristiques robustes accélérées, est un algorithme de détection de caractéristique et un descripteur, présenté par des chercheurs de l'ETH Zurich et de la Katholieke Universiteit Leuven pour la première fois en 2006 puis dans une version révisée en 2008. Il est utilisé dans le domaine de vision par ordinateur, pour des tâches de détection d'objet ou de reconstruction 3D.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Structure spinorielleEn géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ».
Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Taux d'expansion (théorie des graphes)En mathématiques, et plus particulièrement en théorie des graphes, le taux d'expansion d'un graphe est une mesure de connectivité de ce graphe. Informellement, un grand taux d'expansion veut dire que n'importe quel sous-ensemble de sommets relativement petit possède beaucoup de connexions avec le reste du graphe. Cette mesure est surtout utilisée en raison des propriétés intéressantes des graphes ayant un fort taux d'expansion, parfois appelés graphes expanseurs. On les retrouve notamment en informatique théorique.
Matrice d'incidenceEn mathématiques, et plus particulièrement en théorie des graphes, la matrice d'incidence d'un graphe est une matrice qui décrit le graphe en indiquant quels liens arrivent sur quels sommets. La matrice d'incidence est une matrice n x p, où n est le nombre de sommets du graphe et p est le nombre de liens (arêtes ou arcs). Cette matrice est définie de deux façons différentes selon que le graphe est orienté ou non orienté.
Regularized least squaresRegularized least squares (RLS) is a family of methods for solving the least-squares problem while using regularization to further constrain the resulting solution. RLS is used for two main reasons. The first comes up when the number of variables in the linear system exceeds the number of observations. In such settings, the ordinary least-squares problem is ill-posed and is therefore impossible to fit because the associated optimization problem has infinitely many solutions.
Multiple edgesIn graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and no loops. Depending on the context, a graph may be defined so as to either allow or disallow the presence of multiple edges (often in concert with allowing or disallowing loops): Where graphs are defined so as to allow multiple edges and loops, a graph without loops or multiple edges is often distinguished from other graphs by calling it a simple graph.