Orthogonal basisIn mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized, the resulting basis is an orthonormal basis. Any orthogonal basis can be used to define a system of orthogonal coordinates Orthogonal (not necessarily orthonormal) bases are important due to their appearance from curvilinear orthogonal coordinates in Euclidean spaces, as well as in Riemannian and pseudo-Riemannian manifolds.
Matrice orthogonaleUne matrice carrée A (n lignes, n colonnes) à coefficients réels est dite orthogonale si A A = I, où A est la matrice transposée de A et I est la matrice identité. Des exemples de matrices orthogonales sont les matrices de rotation, comme la matrice de rotation plane d'angle θ ou les matrices de permutation, comme Une matrice réelle A est orthogonale si et seulement si elle est inversible et son inverse est égale à sa transposée : A = A. Une matrice carrée est orthogonale si et seulement si ses vecteurs colonnes sont orthogonaux deux à deux et de norme 1.
Chromodynamique quantique sur réseauLa chromodynamique quantique sur réseau est une approche non-perturbative de la chromodynamique quantique (QCD) qui se base sur une discrétisation de l'espace-temps. C'est une théorie de jauge sur réseau formulée sur une grille ou réseau de points dans l'espace et le temps. Lorsqu'on fait tendre la taille du réseau vers l'infini et la maille du réseau vers zéro, on retrouve le continuum de la QCD. Il est difficile, voire impossible de trouver des solutions analytiques ou perturbatives de la QCD à basses énergies, de par la nature hautement non-linéaire de la force forte.
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Transition de phasevignette|droite|Noms exclusifs des transitions de phase en thermodynamique. En physique, une transition de phase est la transformation physique d'un système d'une phase vers une autre, induite par la variation d'un paramètre de contrôle externe (température, champ magnétique...). Une telle transition se produit lorsque ce paramètre externe atteint une valeur seuil (ou valeur « critique »). La transformation traduit généralement un changement des propriétés de symétrie du système.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.