Intégrale trigonométriqueEn mathématiques, les intégrales trigonométriques sont une famille d'intégrales basées sur les fonctions trigonométriques. Sinus intégral Il existe deux fonctions sinus intégrales : On peut remarquer que l'intégrande sin(t)/t est la fonction sinus cardinal, et la fonction de Bessel sphérique d'ordre 0. Puisque sinc est une fonction entière paire (holomorphe sur tout le plan complexe), Si est entière, impaire, et l'intégrale dans sa définition peut être calculée le long de tout chemin reliant les extrémités.
Admittance parametersAdmittance parameters or Y-parameters (the elements of an admittance matrix or Y-matrix) are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters.
Intégrale de DirichletL'intégrale de Dirichlet est l'intégrale de la fonction sinus cardinal sur la demi-droite des réels positifs Il s'agit d'une intégrale impropre semi-convergente, c'est-à-dire qu'elle n'est pas absolument convergente () mais existe et est finie. On considère la fonctionEn 0, sa limite à droite vaut 1, donc f est prolongeable en une application continue sur [0, +∞[, si bien qu'elle est intégrable sur [0, a] pour tout a > 0.Mais elle n'est pas intégrable en +∞, c'est-à-dire que.
Mécanique quantique dans l'espace des phasesLa formulation de la mécanique quantique dans l'espace des phases place les variables de position et d'impulsion sur un pied d'égalité dans l'espace des phases. En revanche, la représentation de Schrödinger utilise soit la représentation dans l'espace des positions, soit la représentation dans celui des impulsions (voir la page espace des positions et des impulsions).
Intégrale de FresnelL'intégrale de Fresnel est une intégrale impropre introduite par le physicien français Augustin Fresnel. Ces égalités sont équivalentes à l'expression de l'intégrale de Fresnel complexe (par identification des parties réelle et imaginaire dans un sens et par combinaison linéaire dans l'autre) : Le calcul explicite montrera que l'intégrale de Fresnel converge, mais on peut s'en assurer plus simplement : par le changement de variable s = t, la convergence de équivaut à celle de ; d'après la règle d'Abel, pour tout λ > 0, l'intégrale converge.
Analyse dimensionnellethumb|Préparation d'une maquette dans un bassin d'essai. L'analyse dimensionnelle est une méthode pratique permettant de vérifier l'homogénéité d'une formule physique à travers ses équations aux dimensions, c'est-à-dire la décomposition des grandeurs physiques qu'elle met en jeu en un produit de grandeurs de base : longueur, durée, masse, intensité électrique, irréductibles les unes aux autres.
Fonction hyperboliqueEn mathématiques, on appelle fonctions hyperboliques les fonctions cosinus hyperbolique, sinus hyperbolique et tangente hyperbolique. Les noms « sinus », « cosinus » et « tangente » proviennent de leur ressemblance avec les fonctions trigonométriques (dites « circulaires » car en relation avec le cercle unité x + y = 1) et le terme « hyperbolique » provient de leur relation avec l'hyperbole d'équation x – y = 1. Elles sont utilisées en analyse pour le calcul intégral, la résolution des équations différentielles mais aussi en géométrie hyperbolique.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Cost curveIn economics, a cost curve is a graph of the costs of production as a function of total quantity produced. In a free market economy, productively efficient firms optimize their production process by minimizing cost consistent with each possible level of production, and the result is a cost curve. Profit-maximizing firms use cost curves to decide output quantities. There are various types of cost curves, all related to each other, including total and average cost curves; marginal ("for each additional unit") cost curves, which are equal to the differential of the total cost curves; and variable cost curves.