Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Oscillation (mathématiques)L'oscillation quantifie la tendance d'une fonction ou d'une suite à varier entre des valeurs extrémales. Il existe plusieurs notions d'oscillation : oscillation d'une suite de réels, oscillation d'une fonction à valeurs dans un espace métrique (comme R), en un point ou sur une partie de son domaine de définition. right|thumb|L'oscillation d'une suite (représentée en bleu) est la différence entre ses limites supérieure et inférieure.
Singularité (mathématiques)En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
Théorie analytique des nombresdroite|vignette|La fonction zêta de Riemann ζ(s) dans le plan complexe. La couleur d'un point s code la valeur de ζ(s) : les couleurs proches du noir indiquent des valeurs proches de zéro, alors que la teinte code l'argument de la valeur. En mathématiques, la théorie analytique des nombres est une branche de la théorie des nombres qui utilise des méthodes d'analyse mathématique pour résoudre des problèmes concernant les nombres entiers.
Fraction continueEn mathématiques, une fraction continue ou fraction continue simple ou plus rarement fraction continuée est une expression de la forme : comportant un nombre fini ou infini d'étages. On montre qu'on peut « représenter » tout nombre réel sous forme d'une fraction continue, finie ou infinie, dans laquelle a0 est un entier relatif et les autres aj sont des entiers strictement positifs.
Singularité nueEn relativité générale, une singularité nue () est une singularité gravitationnelle qui ne serait pas cachée derrière un horizon des événements. Le concept s'oppose à celui d'une singularité située à l'intérieur d'un trou noir, qui est cachée par l'horizon à partir duquel la force gravitationnelle courbe suffisamment l'espace-temps pour que même la lumière ne puisse s'en échapper. Par conséquent, les objets situés à l'intérieur de l’horizon des événements, y compris la singularité elle-même, ne peuvent être observés directement.
Singularité gravitationnelleEn relativité générale, une singularité gravitationnelle est une région de l'espace-temps au voisinage de laquelle certaines quantités décrivant le champ gravitationnel deviennent infinies quel que soit le système de coordonnées retenu. Les singularités gravitationnelles sont des singularités mises en évidence par les solutions de l'équation du champ gravitationnel d'Albert Einstein. Une singularité gravitationnelle est une singularité du tenseur métrique g et non une simple singularité de coordonnées.