Ellipse (mathématiques)Infobox Polytope | nom = Ellipse | image = Ellipse infobox.gif | légende = Représentation d'une ellipse legend|texte=F et F|Foyers | type = Section conique | aire = | périmètre = | propriétés = En géométrie, une ellipse est une courbe plane fermée obtenue par l’intersection d’un cône de révolution avec un plan, à condition que celui-ci coupe l'axe de rotation du cône ou du cylindre : c'est une conique d'excentricité strictement comprise entre 0 et 1.
Coordonnées cylindriquesUn système de est un système de coordonnées curvilignes orthogonales qui généralise à l'espace celui des coordonnées polaires du plan en y ajoutant une troisième coordonnée, généralement notée z, qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires (de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions). Les coordonnées cylindriques servent à indiquer la position d'un point dans l'espace. Les coordonnées cylindriques ne servent pas pour les vecteurs.
Pôle et polaireEn géométrie euclidienne, la polaire d'un point par rapport à deux droites sécantes du plan est une droite définie par conjugaison harmonique : les deux droites données, la droite joignant le point à leur intersection, et la polaire forment un faisceau harmonique ; le point est appelé pôle (de cette droite). Cette notion se généralise à celle de polaire par rapport à un cercle, puis par rapport à une conique. La relation entre pôle et polaire est en fait projective : elle est conservée par homographie.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Spline cubique d'HermiteOn appelle spline cubique d'Hermite une spline de degré trois, nommée ainsi en hommage à Charles Hermite, permettant de construire un polynôme de degré minimal (le polynôme doit avoir au minimum quatre degrés de liberté et être donc de degré 3) interpolant une fonction en deux points avec ses tangentes. Chaque polynôme se trouve sous la forme suivante : thumb|Les quatre polynômes de base avec ce qui donne le polynôme suivant : Sous cette écriture, il est possible de voir que le polynôme p vérifie : La courbe est déterminée par la position des points et des tangentes.
Circular sectionIn geometry, a circular section is a circle on a quadric surface (such as an ellipsoid or hyperboloid). It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle. Any plane section of a sphere is a circular section, if it contains at least 2 points. Any quadric of revolution contains circles as sections with planes that are orthogonal to its axis; it does not contain any other circles, if it is not a sphere.
Méthode des volumes finisEn analyse numérique, la méthode des volumes finis est utilisée pour résoudre numériquement des équations aux dérivées partielles, comme la méthode des différences finies et celle des éléments finis. Contrairement à la méthode des différences finies, qui met en jeu des approximations des dérivées, les méthodes des volumes finis et des éléments finis exploitent des approximations d'intégrales.
Cône (géométrie)vignette|Illustration à l'article Problemata mathematica... publiée sur les Acta Eruditorum, 1734 En géométrie, un cône est une surface réglée ou bien un solide. Un cône est une surface réglée définie par une droite (d), appelée génératrice, passant par un point fixe S appelé sommet et un point variable décrivant une courbe (c), appelée courbe directrice. On parle aussi dans ce cas de surface conique. Cône de révolution Parmi ces surfaces coniques, la plus étudiée est le cône de révolution dans lequel la courbe directrice est un cercle de centre O situé dans un plan perpendiculaire à (SO).
Estimation spectraleL'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie: