Compresseur axialLe compresseur axial est un type de compresseur mécanique dont le flux gazeux, de plus en plus comprimé, suit l'axe de rotation, et dont le fluide de sortie a un mouvement axial. Le compresseur axial génère un flux continu de gaz comprimé . Il est nécessaire d'avoir plusieurs étages de d'aubes pour obtenir des pressions élevées et des taux de compression équivalents à ceux d'un compresseur centrifuge. Un compresseur axial est composé d'éléments en rotation et d'éléments statiques: l'arbre central, guidé par des paliers et une butée, est composé d'anneaux composés eux-mêmes d'aubes rotoriques et statoriques.
Faisceau gaussienEn optique, un faisceau gaussien est une solution particulière de l'équation de propagation de Helmholtz (au même titre qu'une onde plane) dans le cadre de l'approximation paraxiale. Ce modèle produit une meilleure description de rayonnements cohérents comme les faisceaux lasers bien qu'il soit incomplet dans le traitement de la diffraction. Plus spécifiquement, un faisceau gaussien est un faisceau dont l'évolution du profil transversal d'amplitude en fonction de la propagation spatiale est proportionnel à une fonction gaussienne, par exemple une fonction de Gauss-Hermite.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
InstabilitéÉtat de déséquilibre dynamique ou thermique de l'atmosphère, qui détermine les mouvements verticaux ascendants.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Hydrodynamic stabilityIn fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century.
ViscositéLa viscosité (du latin viscum, gui, glu) peut être définie comme l'ensemble des phénomènes de résistance au mouvement d'un fluide pour un écoulement avec ou sans turbulence. La viscosité diminue la liberté d'écoulement du fluide et dissipe son énergie. Deux grandeurs physiques caractérisent la viscosité : la viscosité dynamique (celle utilisée le plus généralement) et la seconde viscosité ou la viscosité de volume. On utilise aussi des grandeurs dérivées : fluidité, viscosité cinématique ou viscosité élongationnelle.
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).