Bruits colorésBien que le bruit soit un signal aléatoire, il possède des propriétés statiques caractéristiques. La densité spectrale de puissance en est une, et peut être utilisée pour distinguer les différents types de bruit. Cette classification par la densité spectrale donne une terminologie de « couleurs ». Chaque type est défini par une couleur. Ces définitions sont, en principe, communes aux différentes disciplines pour lesquelles le bruit est un facteur important (comme l'acoustique, la musique, l'électrotechnique et la physique).
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Représentation irréductibleEn mathématiques et plus précisément en théorie des représentations, une représentation irréductible est une représentation non nulle qui n'admet qu'elle-même et la représentation nulle comme sous-représentations. Le présent article traite des représentations d'un groupe. Le théorème de Maschke démontre que dans de nombreux cas, une représentation est somme directe de représentations irréductibles. Dans le cas des groupes finis, les informations liés aux représentations irréductibles sont encodées dans la table de caractères du groupe.
Bruit roseLe bruit rose est un signal aléatoire dont la densité spectrale est constante par bande d'octave. Sa densité spectrale de puissance est inversement proportionnelle à la fréquence du signal. Tandis que le bruit blanc a une énergie spectrale constante sur l'intégralité de l'échelle des fréquences, soit par hertz, le bruit rose possède lui une énergie constante par bande d'octave. Par exemple, avec le bruit rose, la bande d'octave s'étalant de 500 à 1000 hertz contient la même énergie que celle s'étalant de 4000 à 8000 hertz.
Algebra representationIn abstract algebra, a representation of an associative algebra is a module for that algebra. Here an associative algebra is a (not necessarily unital) ring. If the algebra is not unital, it may be made so in a standard way (see the adjoint functors page); there is no essential difference between modules for the resulting unital ring, in which the identity acts by the identity mapping, and representations of the algebra.
Magnitude limite visuelleEn astronomie, la magnitude limite visuelle désigne la magnitude limite, en lumière visible, que peut observer un instrument optique (œil, lunette, télescope, ...). L'œil humain permet de détecter un flux de 50 à 150 photons par seconde de lumière verte, couleur à laquelle les bâtonnets sont le plus sensibles. Ce flux lumineux correspond à une étoile de magnitude 8,5. L’œil humain pourrait donc voir des étoiles de cette magnitude dans le ciel.
Carrier-to-noise ratioIn telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise.
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Méthode de WelchEn estimation spectrale, la méthode de Welch fournit un estimateur consistant de la densité spectrale de puissance. Cette méthode a été proposée par Peter D. Welch en 1967. Le biais de l'estimation est diminué en moyennant temporellement. Elle est à comparer à la méthode de Bartlett où on utilise les propriétés d'ergodicité du signal avec des moyennes statistiques. La méthode de Welch, comme la méthode de Bartlett, utilise une estimation du spectre du périodogramme ; dans les deux cas, on réduit le bruit aux dépens de la résolution en fréquence.