Anosov diffeomorphismIn mathematics, more particularly in the fields of dynamical systems and geometric topology, an Anosov map on a manifold M is a certain type of mapping, from M to itself, with rather clearly marked local directions of "expansion" and "contraction". Anosov systems are a special case of Axiom A systems. Anosov diffeomorphisms were introduced by Dmitri Victorovich Anosov, who proved that their behaviour was in an appropriate sense generic (when they exist at all).
Groupe abélienEn mathématiques, plus précisément en algèbre, un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi de composition interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l'anneau commutatif des entiers relatifs ; l'étude des groupes abéliens apparaît alors comme un cas particulier de la théorie des modules. On sait classifier de façon simple et explicite les groupes abéliens de type fini à isomorphisme près, et en particulier décrire les groupes abéliens finis.
Automorphism groupIn mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group.
Vecteur de KillingEn mathématiques, un vecteur de Killing, ou champ de Killing, est un champ vectoriel sur une variété (pseudo-)riemannienne qui conserve la métrique de cette variété et met en évidence les symétries continues de celle-ci. Intuitivement un vecteur de Killing peut être vu comme un « champ de déplacement » , c'est-à-dire associant à un point M de la variété le point M' défini par le déplacement de M le long de la courbe passant par M dont est le vecteur tangent.
Lie group–Lie algebra correspondenceIn mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and (see real coordinate space and the circle group respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other.
Géométrie elliptiqueUne géométrie elliptique est une géométrie non euclidienne. Les axiomes sont identiques à ceux de la géométrie euclidienne à l'exception de l'axiome des parallèles : en géométrie elliptique, étant donné une droite et un point extérieur à cette droite, il n'existe aucune droite parallèle à cette droite passant par ce point. Il est équivalent de dire que la somme des angles d'un triangle est toujours supérieure à .
Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Face (géométrie)vignette|Un cube : les surfaces en rouge sont les faces du cube. Chaque sommet est entouré par trois faces. En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés. Le suffixe èdre (dans polyèdre) est dérivé du grec hedra, qui signifie face. Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).
Variété kählérienneEn mathématiques, une variété kählérienne ou variété de Kähler est une variété différentielle équipée d'une structure unitaire satisfaisant une condition d'intégrabilité. C'est en particulier une variété riemannienne, une variété symplectique et une variété complexe, ces trois structures étant mutuellement compatibles. Les variétés kählériennes sont un objet d'étude naturel en géométrie différentielle complexe. Elles doivent leur nom au mathématicien Erich Kähler. Plusieurs définitions équivalentes existent.
Coordonnées normalesEn géométrie différentielle, les coordonnées normales d'un point p dans une variété différentielle munie d'une connexion affine symétrique sont un système de coordonnées locales au voisinage de p obtenu par une application exponentielle à l'espace tangent à p. Dans un système de coordonnées normales, les symboles de Christoffel de la connexion disparaissent au point p. En coordonnées normales, associées à une connexion de Levi-Civita d'une variété riemannienne, on peut en outre faire en sorte que le tenseur métrique soit le symbole de Kronecker au point p, et que les dérivées partielles premières de la métrique à p disparaissent.