Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Graphe dualEn théorie des graphes, le graphe dual d'un graphe plongé dans une surface est défini à l'aide des composantes de son complémentaire, lesquelles sont reliées entre elles par les arêtes du graphe de départ. Cette notion généralise celle de dualité dans les polyèdres. Il faut noter qu'un même graphe abstrait peut avoir des graphes duaux non isomorphes en fonction du plongement choisi, même dans le cas de plongements dans le plan. Un graphe (plongé) isomorphe à son dual est dit autodual.
Théorème du séparateur planaireEn théorie des graphes, le théorème du séparateur planaire, stipule que tout graphe planaire peut être divisé en parties plus petites en supprimant un petit nombre de sommets. Plus précisément, le théorème affirme qu'il existe un ensemble de sommets d'un graphe à sommets dont la suppression partitionne le graphe en sous-graphes disjoints dont chacun a au plus sommets. Une forme plus faible du théorème séparateur avec un séparateur de taille au lieu de a été prouvée à l'origine par Ungar (1951), et la forme avec la borne asymptotique plus fine sur la taille du séparateur a été prouvée pour la première fois par Lipton & Tarjan (1979).
Test de planaritéEn théorie des graphes, le problème du test de planarité est le problème algorithmique qui consiste à tester si un graphe donné est un graphe planaire (c'est-à-dire s'il peut être dessiné dans le plan sans intersection d'arêtes). Il s'agit d'un problème bien étudié en informatique pour lequel de nombreux algorithmes pratiques ont été donnés, souvent en décrivant de nouvelles structures de données. La plupart de ces méthodes fonctionnent en temps O(n) (temps linéaire), où n est le nombre d'arêtes (ou de sommets) du graphe, ce qui est asymptotiquement optimal.
Racine d'un nombreEn mathématiques, une racine n-ième d'un nombre a est un nombre b tel que b = a, où n est un entier naturel non nul. Selon que l'on travaille dans l'ensemble des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre de racines n-ièmes d'un nombre peut être 0, 1, 2 ou n. Pour un nombre réel a positif, il existe un unique réel b positif tel que b = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a) et se note avec le symbole radical () ou a.
Provencevignette|Vue de la Mer Méditerranée depuis Toulon La Provence (prononcé dans une large partie de la France, en français de Provence; Provença/Prouvènço en occitan provençal, de l'ancien provençal Provensa, dérivant du latin provincia, "province") est une région historique et culturelle ainsi qu'un ancien État indépendant puis associé à la France. Elle correspond à l'actuelle région Provence-Alpes-Côte d'Azur et au sud de la région Auvergne-Rhône-Alpes.
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
VolumeLe volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace. En physique : le volume d'un objet ou d'une figure géométrique tridimensionnelle et fermée mesure l'extension dans l'espace physique qu'il ou elle possède dans les trois directions en même temps, de même que l'aire d'une figure dans le plan mesure l'extension qu'elle possède dans les deux directions en même temps ; par extension, on étend la notion de volume à des espaces abstraits, dont les coordonnées peuvent avoir une ou des dimensions autres que celle d'une longueur.
File de prioritéEn informatique, une file de priorité est un type abstrait élémentaire sur laquelle on peut effectuer trois opérations : insérer un élément ; extraire l'élément ayant la plus grande clé ; tester si la file de priorité est vide ou pas. Ainsi, elle permet d'implémenter efficacement des planificateurs de tâches, où un accès rapide aux tâches d'importance maximale est souhaité. On la retrouve par exemple dans les ordonnanceurs des systèmes d'exploitation, notamment le noyau Linux.