Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
MéthodologieLa méthodologie est l'étude de l'ensemble des méthodes scientifiques. Elle peut être considérée comme la science de la méthode, ou « méthode des méthodes » (comme il y a une métalinguistique ou linguistique des linguistiques et une métamathématique ou mathématique des mathématiques). Alors, la méthodologie est une classe de méthodes, une sorte de boîte à outils où chaque outil est une méthode de la même catégorie, comme il y a une méthodologie analytique du déterminisme causal et une méthodologie systémique finaliste de la téléologie.
Philosophical methodologyIn its most common sense, philosophical methodology is the field of inquiry studying the methods used to do philosophy. But the term can also refer to the methods themselves. It may be understood in a wide sense as the general study of principles used for theory selection, or in a more narrow sense as the study of ways of conducting one's research and theorizing with the goal of acquiring philosophical knowledge.
Prévision numérique du tempsLa prévision numérique du temps (PNT) est une application de la météorologie et de l'informatique. Elle repose sur le choix d'équations mathématiques offrant une proche approximation du comportement de l'atmosphère réelle. Ces équations sont ensuite résolues, à l'aide d'un ordinateur, pour obtenir une simulation accélérée des états futurs de l'atmosphère. Le logiciel mettant en œuvre cette simulation est appelé un modèle de prévision numérique du temps.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Software verification and validationIn software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle.
Extrapolation de RichardsonEn analyse numérique, le procédé d'extrapolation de Richardson est une technique d'accélération de la convergence. Il est ainsi dénommé en l'honneur de Lewis Fry Richardson, qui l'a popularisé au début du . Les premières utilisations remontent à Huygens en 1654 et Takebe Kenkō en 1723, pour l'évaluation numérique de π. Ce procédé est notamment utilisé pour définir une méthode numérique d'intégration : la méthode de Romberg, accélération de la méthode des trapèzes.
Numerical errorIn software engineering and mathematics, numerical error is the error in the numerical computations. It can be the combined effect of two kinds of error in a calculation. the first is caused by the finite precision of computations involving floating-point or integer values the second usually called truncation error is the difference between the exact mathematical solution and the approximate solution obtained when simplifications are made to the mathematical equations to make them more amenable to calculation.