Complétion d'une mesureEn mathématiques, une mesure μ est dite complète lorsque tout ensemble négligeable pour cette mesure appartient à la tribu sur laquelle μ est définie. Lorsqu'une mesure n'est pas complète, il existe un procédé assez simple de complétion de la mesure, c'est-à-dire de construction d'une mesure complète apparentée de très près à la mesure initiale. Ainsi la mesure de Lebesgue (considérée comme mesure sur la tribu de Lebesgue) est la complétion de la mesure dite parfois « mesure de Borel-Lebesgue », c'est-à-dire sa restriction à la tribu borélienne.
Cohérence (physique)La cohérence en physique est l'ensemble des propriétés de corrélation d'un système ondulatoire. Son sens initial était la mesure de la capacité d'onde(s) à donner naissances à des interférences — du fait de l'existence d'une relation de phase définie — mais il s'est élargi. On peut parler de cohérence entre 2 ondes, entre les valeurs d'une même onde à deux instants différents (cohérence temporelle) ou entre les valeurs d'une même onde à deux endroits différents (cohérence spatiale).
Universal setIn set theory, a universal set is a set which contains all objects, including itself. In set theory as usually formulated, it can be proven in multiple ways that a universal set does not exist. However, some non-standard variants of set theory include a universal set. Many set theories do not allow for the existence of a universal set. There are several different arguments for its non-existence, based on different choices of axioms for set theory. In Zermelo–Fraenkel set theory, the axiom of regularity and axiom of pairing prevent any set from containing itself.
Théorie des ensembles approximatifsThéorie des ensembles approximatifs – est un formalisme mathématique proposé en 1982 par le professeur Zdzisław Pawlak. Elle généralise la théorie des ensembles classique. Un ensemble approximatif (anglais : rough set) est un objet mathématique basé sur la logique 3 états. Dans sa première définition, un ensemble approximatif est une paire de deux ensembles : une approximation inférieure et une approximation supérieure. Il existe également un type d'ensembles approximatifs défini par une paire d'ensembles flous (anglais : fuzzy set).
Théorie MLa théorie M est une théorie physique devant unifier les différentes versions de la théorie des supercordes. L'existence de cette théorie fut conjecturée par Edward Witten en 1995, lors d'un colloque sur la théorie des cordes à l'Université de Californie du Sud. Cette annonce engendra un tourbillon de nouvelles recherches, qu'on a appelé la . Selon Witten le M de théorie M peut signifier magie, mystère ou membrane au choix, et le véritable sens ne s'imposera que quand la théorie sera formulée définitivement.
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.
Mesure de BorelIn mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
Ensemble flouLa théorie des sous-ensembles flous est une théorie mathématique du domaine de l’algèbre abstraite. Elle a été développée par Lotfi Zadeh en 1965 afin de représenter mathématiquement l'imprécision relative à certaines classes d'objets et sert de fondement à la logique floue. Les sous-ensembles flous (ou parties floues) ont été introduits afin de modéliser la représentation humaine des connaissances, et ainsi améliorer les performances des systèmes de décision qui utilisent cette modélisation.
Ensemble négligeablevignette|Le triangle de Sierpiński est un exemple d'ensemble nul de points dans R 2 \mathbb {R} ^{2}. En théorie de la mesure, dans un espace mesuré, un ensemble négligeable est un ensemble de mesure nulle ou une partie d'un tel ensemble. La définition peut dépendre de la mesure choisie : deux mesures sur un même espace mesurable qui ont les mêmes ensembles de mesure nulle sont dites équivalentes. À un niveau élémentaire, il est possible d'aborder la notion d'ensemble négligeable pour un certain nombre d'espaces (dont la droite réelle) sans avoir à introduire une mesure.
Set-builder notationIn set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements, or stating the properties that its members must satisfy. Defining sets by properties is also known as set comprehension, set abstraction or as defining a set's intension. Set (mathematics)#Roster notation A set can be described directly by enumerating all of its elements between curly brackets, as in the following two examples: is the set containing the four numbers 3, 7, 15, and 31, and nothing else.