Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Entropie de RényiL'entropie de Rényi, due à Alfréd Rényi, est une fonction mathématique qui correspond à la quantité d'information contenue dans la probabilité de collision d'une variable aléatoire. Étant donnés une variable aléatoire discrète à valeurs possibles , ainsi qu'un paramètre réel strictement positif et différent de 1, l' entropie de Rényi d'ordre de est définie par la formule : L'entropie de Rényi généralise d'autres acceptions de la notion d'entropie, qui correspondent chacune à des valeurs particulières de .
Étude cas-témoinsUne étude cas-témoins est une étude statistique observationnelle rétrospective utilisée en épidémiologie. Les études cas-témoins sont utilisées pour mettre en évidence des facteurs qui peuvent contribuer à l'apparition d'une maladie en comparant des sujets qui ont cette maladie (les cas) avec des sujets qui n'ont pas la maladie mais qui sont similaires par ailleurs (les témoins).
Suite géométriqueEn mathématiques, une suite géométrique est une suite de nombres dans laquelle chaque terme permet de déduire le suivant par multiplication par un facteur constant appelé raison. Ainsi, une suite géométrique a la forme suivante : La définition peut s'écrire sous la forme d'une relation de récurrence, c'est-à-dire que pour chaque entier naturel n : Le qualificatif « géométrique » réfère au fait que, dans une suite géométrique à termes positifs, un terme quelconque (à l'exception du premier) est égal à la moyenne géométrique du terme qui le précède et de celui qui lui succède.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Statistical Methods for Research WorkersStatistical Methods for Research Workers is a classic book on statistics, written by the statistician R. A. Fisher. It is considered by some to be one of the 20th century's most influential books on statistical methods, together with his The Design of Experiments (1935). It was originally published in 1925, by Oliver & Boyd (Edinburgh); the final and posthumous 14th edition was published in 1970. According to Denis Conniffe: Ronald A.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Fat-tailed distributionA fat-tailed distribution is a probability distribution that exhibits a large skewness or kurtosis, relative to that of either a normal distribution or an exponential distribution. In common usage, the terms fat-tailed and heavy-tailed are sometimes synonymous; fat-tailed is sometimes also defined as a subset of heavy-tailed. Different research communities favor one or the other largely for historical reasons, and may have differences in the precise definition of either.