Matrices de PauliLes matrices de Pauli, développées par Wolfgang Pauli, forment, au facteur i près, une base de l'algèbre de Lie du groupe SU(2). Elles sont définies comme l'ensemble de matrices complexes de dimensions suivantes : (où i est l’unité imaginaire des nombres complexes). Ces matrices sont utilisées en mécanique quantique pour représenter le spin des particules, notamment dès 1927 dans l'étude non-relativiste du spin de l'électron : l'équation de Pauli.
Matrice de DiracLes matrices de Dirac sont des matrices qui furent introduites par Paul Dirac, lors de la recherche d'une équation d'onde relativiste de l'électron. Le pendant relativiste de l'équation de Schrödinger est l'équation de Klein-Gordon. Celle-ci décrit des particules de spin 0 et ne convient pas pour les électrons qui sont de spin 1/2. Dirac essaya alors de trouver une équation linéaire comme celle de Schrödinger sous la forme : où est une fonction d'onde vectorielle, la masse de la particule, l'hamiltonien, sont respectivement un vecteur de matrices hermitiques et une matrice hermitique, et i désigne l'unité imaginaire.
Décomposition de SchurEn algèbre linéaire, une décomposition de Schur (nommée après le mathématicien Issai Schur) d'une matrice carrée complexe M est une décomposition de la formeoù U est une matrice unitaire (U*U = I) et A une matrice triangulaire supérieure. On peut écrire la décomposition de Schur en termes d'applications linéaires : Dans le cas où est l'application nulle, l'énoncé est directement vérifié, on peut donc se contenter de traiter le cas où est différente de l'application nulle.
Antiquité classiquethumb|L'acropole d'Athènes, haut lieu de l'Antiquité classique : le Parthénon et de l'Érechthéion. Le terme Antiquité classique s'oppose à Antiquité tardive et renvoie à l'histoire et à l'héritage de la civilisation gréco-romaine. Il est surtout employé dans les découpes historiques relatives à l'historiographie anglo-saxonne (historiens anglais et américains principalement) pour décrire la période de l'Antiquité correspondant au développement des civilisations de la Grèce antique et de la Rome antique.
Puits à eauUn puits à eau est le résultat d'un terrassement vertical, mécanisé (par forage, havage, etc.) ou manuel, permettant l'exploitation d'une nappe d'eau souterraine, autrement dit un aquifère. L'eau peut être remontée au niveau du sol grâce à un seau ou une pompe, manuelle ou non. Les puits sont très divers, que ce soit par leur mode de creusement, leur profondeur, leur volume d'eau, ou leur équipement. Les premiers puits étaient probablement de simples trous mal protégés des éboulements et qui n'ont pas résisté au temps et ont disparu.
Musique classiquethumb|250px|Une vingtaine de compositeurs de musique classique, parmi les plus importants couvrant la période du .(De gauche à droite, de haut en bas : — Antonio Vivaldi, Jean-Sébastien Bach, Georg Friedrich Haendel, Wolfgang Amadeus Mozart, Ludwig van Beethoven — Gioachino Rossini, Felix Mendelssohn, Frédéric Chopin, Richard Wagner, Giuseppe Verdi — Johann Strauss II, Johannes Brahms, Georges Bizet, Piotr Ilitch Tchaïkovski, Antonín Dvořák — Edvard Grieg, Edward Elgar, Sergueï Rachmaninov, George Gershwin, Aram Khatchatourian.
Mécanique newtonienneLa mécanique newtonienne est une branche de la physique. Depuis les travaux d'Albert Einstein, elle est souvent qualifiée de mécanique classique. La mécanique classique ou mécanique newtonienne est une théorie physique qui décrit le mouvement des objets macroscopiques lorsque leur vitesse est faible par rapport à celle de la lumière. Avant de devenir une science à part entière, la mécanique a longtemps été une section des mathématiques. De nombreux mathématiciens y ont apporté une contribution souvent décisive, parmi eux des grands noms tels qu'Euler, Cauchy, Lagrange.
Musique de la période classiqueLa musique de la période classique recouvre par convention la musique écrite entre la mort de Johann Sebastian Bach soit 1750 et le début de la période romantique, soit les années 1820. Par extension, on appelle « musique classique » (ou grande musique) toute la musique savante européenne, de la musique du Moyen Âge à la musique contemporaine.
GMRESEn mathématique, la généralisation de la méthode de minimisation du résidu (ou GMRES, pour Generalized minimal residual) est une méthode itérative pour déterminer une solution numérique d'un système d'équations linéaires. La méthode donne une approximation de la solution par un vecteur appartenant à un sous-espace de Krylov avec un résidu minimal. Pour déterminer ce vecteur, on utilise la . La méthode GMRES fut développée par Yousef Saad et Martin H. Schultz en 1986.
Effet StarkEn physique atomique, l'effet Stark (du nom de son découvreur Johannes Stark) est la modification des états électroniques sous l'action d'un champ électrique qui se traduit par l'éclatement et le décalage de raies spectrales en plusieurs composantes. La valeur énergétique de ce décalage s'appelle le décalage Stark (Stark shift). C'est un effet analogue à l'effet Zeeman (modification des états électroniques par application d'un champ magnétique). L'effet Stark est, entre autres, responsable de l'élargissement des raies spectrales par des particules chargées.