Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.
Divide-and-conquer eigenvalue algorithmDivide-and-conquer eigenvalue algorithms are a class of eigenvalue algorithms for Hermitian or real symmetric matrices that have recently (circa 1990s) become competitive in terms of stability and efficiency with more traditional algorithms such as the QR algorithm. The basic concept behind these algorithms is the divide-and-conquer approach from computer science. An eigenvalue problem is divided into two problems of roughly half the size, each of these are solved recursively, and the eigenvalues of the original problem are computed from the results of these smaller problems.
Réduction de la dimensionnalitévignette|320x320px|Animation présentant la projection de points en deux dimensions sur les axes obtenus par analyse en composantes principales, une méthode populaire de réduction de la dimensionnalité La réduction de la dimensionnalité (ou réduction de (la) dimension) est un processus étudié en mathématiques et en informatique, qui consiste à prendre des données dans un espace de grande dimension, et à les remplacer par des données dans un espace de plus petite dimension.
Fléau de la dimensionLe fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage.
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Nonlinear dimensionality reductionNonlinear dimensionality reduction, also known as manifold learning, refers to various related techniques that aim to project high-dimensional data onto lower-dimensional latent manifolds, with the goal of either visualizing the data in the low-dimensional space, or learning the mapping (either from the high-dimensional space to the low-dimensional embedding or vice versa) itself. The techniques described below can be understood as generalizations of linear decomposition methods used for dimensionality reduction, such as singular value decomposition and principal component analysis.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Algorithme de recherche de valeur propreUn problème important en analyse numérique consiste à développer des algorithmes efficaces et stables pour trouver les valeurs propres d'une matrice. Ces algorithmes de recherche de valeurs propres peuvent être étendus pour donner les vecteurs propres associés. Valeur propre, vecteur propre et espace propre Pour une matrice carrée A de taille n × n réelle ou complexe, une valeur propre λ et son vecteur propre généralisé associé v sont un couple vérifiant la relation où v est un vecteur colonne n × 1 non nul, I la matrice identité de taille n × n, k un entier positif.