Axiome du choix dépendantEn mathématiques, l'axiome du choix dépendant, noté DC, est une forme faible de l'axiome du choix (AC), suffisante pour développer une majeure partie de l'analyse réelle. Il a été introduit par Bernays. L'axiome peut s'énoncer comme suit : pour tout ensemble non vide X, et pour toute relation binaire R sur X, si l'ensemble de définition de R est X tout entier (c'est-à-dire si pour tout a∈X, il existe au moins un b∈X tel que aRb) alors il existe une suite (xn) d'éléments de X telle que pour tout n∈N, xnRxn+1.
Modélisation moléculairethumb|Animation d'un modèle compact d'ADN en forme B|327x327px|alt=Modèle de l'ADN en forme B La modélisation moléculaire est un ensemble de techniques pour modéliser ou simuler le comportement de molécules. Elle est utilisée pour reconstruire la structure tridimensionnelle de molécules, en particulier en biologie structurale, à partir de données expérimentales comme la cristallographie aux rayons X. Elle permet aussi de simuler le comportement dynamique des molécules et leur mouvements internes.
Axiome du choix dénombrablevignette|Chaque ensemble dans la suite dénombrable d'ensembles (Si) = S1, S2, S3, ... contient un élément différent de zéro, et éventuellement une infinité (ou même une infinité indénombrable) d'éléments. L'axiome du choix dénombrable nous permet de sélectionner arbitrairement un seul élément de chaque ensemble, formant une suite correspondante d'éléments (xi) = x1, x2, x3, ...
DéfinitionUne définition est une proposition qui met en équivalence un élément définissant et un élément étant défini. Une définition a pour but de clarifier, d'expliquer. Elle détermine les limites ou « un ensemble de traits qui circonscrivent un objet ». Selon les Définitions du pseudo-Platon, la définition est la . Aristote, dans le Topiques, définit le mot comme En mathématiques, on définit une notion à partir de notions antérieurement définies. Les notions de bases étant les symboles non logiques du langage considéré, dont l'usage est défini par les axiomes de la théorie.
Domaine protéiqueredresse=1.15|vignette|Exemples de structures de protéines organisées en domaines distincts. Le domaine de couleur brique, appelé domaine PH, est commun aux deux protéines,. Sa fonction est de fixer le phosphatidylinositol-3,4,5-trisphosphate (PIP3) Un domaine protéique est une partie d'une protéine capable d'adopter une structure de manière autonome ou partiellement autonome du reste de la molécule. C'est un élément modulaire de la structure des protéines qui peuvent ainsi être composées de l'assemblage de plusieurs de ces domaines.
Prédiction de la structure des protéinesLa prédiction de la structure des protéines est l'inférence de la structure tridimensionnelle des protéines à partir de leur séquences d'acides aminés, c'est-à-dire la prédiction de leur pliage et de leur structures secondaire et tertiaire à partir de leur structure primaire. La prédiction de la structure est fondamentalement différente du problème inverse de la conception des protéines. Elle est l'un des objectifs les plus importants poursuivis par la bioinformatique et la chimie théorique.
Calcul des structures et modélisationLe calcul des structures et la modélisation concernent deux domaines distincts : d'une part les applications spécifiques au patrimoine architectural, mobilier et naturel et d'autre part les applications industrielles. Le calcul des structures et leur modélisation est utilisé dans les domaines : de la conservation et mise en valeur du patrimoine architectural, mobilier et naturel, dans le cadre de missions d’assistance à la maître d’œuvre ou au maître d’ouvrage permettant d’arrêter un programme de travaux, d’applications industrielles.
Théorie algorithmique de l'informationLa théorie algorithmique de l'information, initiée par Kolmogorov, Solomonov et Chaitin dans les années 1960, vise à quantifier et qualifier le contenu en information d'un ensemble de données, en utilisant la théorie de la calculabilité et la notion de machine universelle de Turing. Cette théorie permet également de formaliser la notion de complexité d'un objet, dans la mesure où l'on considère qu'un objet (au sens large) est d'autant plus complexe qu'il faut beaucoup d'informations pour le décrire, ou — à l'inverse — qu'un objet contient d'autant plus d'informations que sa description est longue.
Axiome du choixvignette|upright=1.5|Pour tout ensemble d'ensembles non vides (les jarres), il existe une fonction qui associe à chacun de ces ensembles (ces jarres) un élément contenu dans cet ensemble (cette jarre). En mathématiques, l'axiome du choix, abrégé en « AC », est un axiome de la théorie des ensembles qui Il a été formulé pour la première fois par Ernest Zermelo en 1904 pour la démonstration du théorème de Zermelo. L'axiome du choix peut être accepté ou rejeté, selon la théorie axiomatique des ensembles choisie.
Lexical definitionThe lexical definition of a term, also known as the dictionary definition, is the definition closely matching the meaning of the term in common usage. As its other name implies, this is the sort of definition one is likely to find in the dictionary. A lexical definition is usually the type expected from a request for definition, and it is generally expected that such a definition will be stated as simply as possible in order to convey information to the widest audience.