Principe variationnelUn principe variationnel est un principe physique s'exprimant sous une forme variationnelle et duquel, dans un domaine précis de la physique (mécanique, optique géométrique, électromagnétisme, etc), de nombreuses propriétés peuvent être déduites. Dans de nombreux cas, la résolution des équations se ramène à la recherche de géodésiques dans un espace approprié (en général l'espace des états du système physique étudié), sachant que ces géodésiques sont les extrémales d'une certaine intégrale représentant la longueur de l'arc joignant les points fixes dans cet espace abstrait.
Magnetic domainA magnetic domain is a region within a magnetic material in which the magnetization is in a uniform direction. This means that the individual magnetic moments of the atoms are aligned with one another and they point in the same direction. When cooled below a temperature called the Curie temperature, the magnetization of a piece of ferromagnetic material spontaneously divides into many small regions called magnetic domains. The magnetization within each domain points in a uniform direction, but the magnetization of different domains may point in different directions.
Gouvernementvignette|Le gouvernement des Pays-Bas sous le mandat du Premier ministre Dries van Agt, en 1982, avant une traditionnelle « photographie de famille », souvent réalisée peu après sa formation. Un gouvernement est une politique qui exerce le pouvoir exécutif du pays, mais dans certains contextes, c'est l'ensemble des institutions qui ont un pouvoir. Dans un régime parlementaire, le gouvernement est responsable politiquement devant le parlement ; dans un régime présidentiel, le gouvernement n'est responsable que devant le chef de l'État.
Coordonnées canoniquesEn mathématiques et en mécanique classique, les coordonnées canoniques sont des ensembles de coordonnées sur l'espace des phases qui peuvent être utilisées pour décrire un système physique à un moment donné dans le temps. Les coordonnées canoniques sont utilisées dans la formulation hamiltonienne de la mécanique classique. Un concept étroitement lié apparaît également en mécanique quantique ; voir le théorème de Stone-von Neumann et les relations de commutation canoniques pour plus de détails.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Maupertuis's principleIn classical mechanics, Maupertuis's principle (named after Pierre Louis Maupertuis) states that the path followed by a physical system is the one of least length (with a suitable interpretation of path and length). It is a special case of the more generally stated principle of least action. Using the calculus of variations, it results in an integral equation formulation of the equations of motion for the system. Maupertuis's principle states that the true path of a system described by generalized coordinates between two specified states and is a stationary point (i.
Slope fieldA slope field (also called a direction field) is a graphical representation of the solutions to a first-order differential equation of a scalar function. Solutions to a slope field are functions drawn as solid curves. A slope field shows the slope of a differential equation at certain vertical and horizontal intervals on the x-y plane, and can be used to determine the approximate tangent slope at a point on a curve, where the curve is some solution to the differential equation.
Contact (géométrie)vignette|La courbe est tangente au cercle. En géométrie différentielle, la notion de contact approfondit l'étude de la tangence, en déterminant des cas particuliers pour lesquels deux courbes s'épousent plus fortement au voisinage du point de contact. On définit ainsi une échelle d'ordres de contact de plus en plus forts et de plus en plus rares. La tangence est un contact d'ordre au moins 1 ; quand le contact est d'ordre au moins 2, on parle de courbes osculatrices, puis surosculatrices pour un contact d'ordre encore supérieur.
Coordonnées grassmanniennesLes coordonnées grassmanniennes sont une généralisation des coordonnées plückeriennes qui permettent de paramétrer les sous espaces de dimension de l'espace vectoriel par un élément de l'espace projectif de l'espace vectoriel des produits extérieurs des familles de vecteurs de . Le plongement plückerien est un plongement naturel de la variété grassmannienne dans l'espace projectif : Ce plongement est défini comme suit.