Coordonnées généraliséesthumb|Calcul de vecteurs dans un système de coordonnées généralisées cartésien. On appelle coordonnées généralisées d'un système physique un ensemble de variables réelles, qui ne correspondent pas toutes à des coordonnées cartésiennes (par exemple : angles, positions relatives), et permettant de décrire ce système, en particulier dans le cadre de la mécanique lagrangienne. Le terme « généralisées » vient de l'époque où les coordonnées cartésiennes étaient considérées comme étant les coordonnées normales ou naturelles.
Thermodynamic free energyIn thermodynamics, the thermodynamic free energy is one of the state functions of a thermodynamic system (the others being internal energy, enthalpy, entropy, etc.). The change in the free energy is the maximum amount of work that the system can perform in a process at constant temperature, and its sign indicates whether the process is thermodynamically favorable or forbidden. Since free energy usually contains potential energy, it is not absolute but depends on the choice of a zero point.
Troisième principe de la thermodynamiquevignette|Walther Hermann Nernst. Le troisième principe de la thermodynamique, appelé aussi principe de Nernst (1906), énonce que : La valeur de l'entropie de tout corps pur dans l'état de cristal parfait est nulle à la température de . Cela permet d'avoir une valeur déterminée de l'entropie (et non pas « à une constante additive près »). Ce principe est irréductiblement lié à l'indiscernabilité quantique des particules identiques. Il a été énoncé par Walther Nernst en 1906, puis Max Planck en 1912.
Équation différentielle ordinaireEn mathématiques, une équation différentielle ordinaire (parfois simplement appelée équation différentielle et abrégée en EDO) est une équation différentielle dont la ou les fonctions inconnues ne dépendent que d'une seule variable; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. Le terme ordinaire est utilisé par opposition au terme équation différentielle partielle (plus communément équation aux dérivées partielles, ou EDP) où la ou les fonctions inconnues peuvent dépendre de plusieurs variables.
Thermodynamique quantiqueLa thermodynamique quantique est l'extension de la thermodynamique aux phénomènes quantiques. Elle se distingue de la physique statistique quantique par l'accent mis sur les processus dynamiques hors d'équilibre ainsi que par son éventuelle application à un système quantique individuel. Annoncée par les travaux d'Einstein sur la quantification du rayonnement et de Planck sur le rayonnement du corps noir, la thermodynamique quantique n'a commencé à être constituée en théorie autonome qu'à la fin des années 2010 et reste incomplète en .
Relations de MaxwellEn thermodynamique, les relations de Maxwell sont un ensemble de relations entre dérivées partielles de diverses grandeurs obtenues par l'application du théorème de Schwarz aux potentiels thermodynamiques. Elles portent le nom de James Clerk Maxwell qui les publia en 1871. Pour un système entièrement décrit par les grandeurs pression , température , entropie et volume , on retient généralement un ensemble de quatre relations relatives à l'énergie interne, à l'enthalpie, à l'énergie libre et à l'enthalpie libre : Néanmoins les relations de Maxwell sont généralisables à tous les systèmes thermodynamiques notamment chimiques, électriques et électrochimiques.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Fonction d'erreurthumb|right|upright=1.4|Construction de la fonction d'erreur réelle. En mathématiques, la fonction d'erreur (aussi appelée fonction d'erreur de Gauss) est une fonction entière utilisée en analyse. Cette fonction se note erf et fait partie des fonctions spéciales. Elle est définie par : La fonction erf intervient régulièrement dans le domaine des probabilités et statistiques, ainsi que dans les problèmes de diffusion (de la chaleur ou de la matière).
Équation différentielleEn mathématiques, une équation différentielle est une équation dont la ou les « inconnue(s) » sont des fonctions ; elle se présente sous la forme d'une relation entre ces fonctions inconnues et leurs dérivées successives. C'est un cas particulier d'équation fonctionnelle. On distingue généralement deux types d'équations différentielles : les équations différentielles ordinaires (EDO) où la ou les fonctions inconnues recherchées ne dépendent que d'une seule variable ; les équations différentielles partielles, plutôt appelées équations aux dérivées partielles (EDP), où la ou les fonctions inconnues recherchées peuvent dépendre de plusieurs variables indépendantes.
Cinétique chimiqueLa cinétique chimique est l'étude de la vitesse des réactions chimiques. Sur le plan disciplinaire, elle fait partie de la chimie physique. Certaines réactions sont totales et très rapides, voire instantanées, comme les explosions. D'autres sont tellement lentes qu'elles durent plusieurs années (comme la formation de la rouille), voire plusieurs siècles (comme la formation du charbon ou du pétrole). Certaines sont même tellement lentes que les réactifs de départ sont considérés comme stables, par exemple la transformation du diamant en carbone graphite.