Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Loi stableLa loi stable ou loi de Lévy tronquée, nommée d'après le mathématicien Paul Lévy, est une loi de probabilité utilisée en mathématiques, physique et analyse quantitative (finance de marché). On dit qu'une variable aléatoire réelle est de loi stable si elle vérifie l'une des 3 propriétés équivalentes suivantes : Pour tous réels strictement positifs et , il existe un réel strictement positif et un réel tels que les variables aléatoires et aient la même loi, où et sont des copies indépendantes de .
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Loi de probabilité marginaleEn théorie des probabilités et en statistique, la loi marginale d'un vecteur aléatoire, c'est-à-dire d'une variable aléatoire à plusieurs dimensions, est la loi de probabilité d'une de ses composantes. Autrement dit, la loi marginale est une variable aléatoire obtenue par « projection » d'un vecteur contenant cette variable. Par exemple, pour un vecteur aléatoire , la loi de la variable aléatoire est la deuxième loi marginale du vecteur. Pour obtenir la loi marginale d'un vecteur, on projette la loi sur l'espace unidimensionnel de la coordonnée recherchée.
Distribution (mathématiques)En analyse mathématique, une distribution (également appelée fonction généralisée) est un objet qui généralise la notion de fonction et de mesure. La théorie des distributions étend la notion de dérivée à toutes les fonctions localement intégrables et au-delà, et est utilisée pour formuler des solutions à certaines équations aux dérivées partielles. Elles sont importantes en physique et en ingénierie où beaucoup de problèmes discontinus conduisent naturellement à des équations différentielles dont les solutions sont des distributions plutôt que des fonctions ordinaires.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Probabilité conditionnellevignette|Illustration des probabilités conditionnelles avec un diagramme d'Euler. On a la probabilité a priori et les probabilités conditionnelles , et .|320x320px En théorie des probabilités, une probabilité conditionnelle est la probabilité d'un événement sachant qu'un autre événement a eu lieu. Par exemple, si une carte d'un jeu est tirée au hasard, on estime qu'il y a une chance sur quatre d'obtenir un cœur ; mais si on aperçoit un reflet rouge sur la table, il y a maintenant une chance sur deux d'obtenir un cœur.
Ratio distributionA ratio distribution (also known as a quotient distribution) is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two (usually independent) random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution. An example is the Cauchy distribution (also called the normal ratio distribution), which comes about as the ratio of two normally distributed variables with zero mean.