Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Optimisation linéaire en nombres entiersL'optimisation linéaire en nombres entiers (OLNE) (ou programmation linéaire en nombres entiers (PLNE) ou integer programming (IP) ou Integer Linear Programming (ILP)) est un domaine des mathématiques et de l'informatique théorique dans lequel on considère des problèmes d'optimisation d'une forme particulière. Ces problèmes sont décrits par une fonction de coût et des contraintes linéaires, et par des variables entières.
Relaxation continueEn informatique théorique et en recherche opérationnelle, la relaxation continue est une méthode qui consiste à interpréter de façon continue un problème combinatoire ou discret. Cette méthode est utilisée afin d'obtenir des informations sur le problème discret initial et parfois même pour obtenir sa solution. Les problèmes discrets ou combinatoires sont en effet très difficiles à traiter en raison de l'explosion combinatoire et il est courant de les traiter par une méthode de séparation et évaluation (branch and bound en anglais) : la relaxation continue fait partie des algorithmes d'évaluation nécessaire à la mise en œuvre de cette méthode.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Chauffage de l'eauLe chauffage de l'eau est un processus de transfert de chaleur qui utilise une source d'énergie pour chauffer l'eau au-dessus de sa température initiale. Les usages domestiques typiques de l'eau chaude comprennent la cuisine, le nettoyage, la baignade (eau chaude sanitaire, ECS) et le chauffage des locaux (fluide caloporteur). Dans l'industrie, l'eau chaude et l'eau chauffée en vapeur ont de nombreux usages (voir aussi l'article « eau d'alimentation de chaudière »).
Économies d'énergieLes économies d'énergie sont les gains obtenus en réduisant la consommation d'énergie ou les pertes sur l'énergie produite. Les économies d'énergie sont devenues un objectif important des pays fortement consommateurs d'énergie vers la fin du , notamment après le choc pétrolier de 1973 puis à partir des années 1990, afin de répondre à plusieurs inquiétudes : la crainte d'un épuisement des ressources naturelles, particulièrement des combustibles fossiles ; le réchauffement climatique résultant des émissions de gaz à effet de serre ; les problèmes politiques et de sécurité d'approvisionnement dus à l'inégale répartition des ressources sur la planète ; le coût de l'énergie que la combinaison de ces phénomènes peut faire augmenter.
Optimisation multiobjectifL'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Ressource hydriqueLa ressource hydrique, ou ressource en eau, comprend, au sens large, toutes les eaux accessibles comme ressources, c'est-à-dire utiles et disponibles pour l'être humain, les végétaux qu'il cultive, le bétail qu'il élève et les écosystèmes, à différents points du cycle de l'eau. Cette ressource est limitée en quantité et en qualité (surtout en zone sèche). Elle est indispensable à la vie et à la plupart des activités humaines, telles que l'agriculture, l'industrie et aux usages domestiques (alimentation en eau potable).