Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Microprocesseur multi-cœurvignette|Un processeur quad-core AMD Opteron. vignette|L’Intel Core 2 Duo E6300 est un processeur double cœur. Un microprocesseur multi-cœur (multi-core en anglais) est un microprocesseur possédant plusieurs cœurs physiques fonctionnant simultanément. Il se distingue d'architectures plus anciennes (360/91) où un processeur unique commandait plusieurs circuits de calcul simultanés. Un cœur (en anglais, core) est un ensemble de circuits capables d’exécuter des programmes de façon autonome.
Algorithme de recherche de valeur propreUn problème important en analyse numérique consiste à développer des algorithmes efficaces et stables pour trouver les valeurs propres d'une matrice. Ces algorithmes de recherche de valeurs propres peuvent être étendus pour donner les vecteurs propres associés. Valeur propre, vecteur propre et espace propre Pour une matrice carrée A de taille n × n réelle ou complexe, une valeur propre λ et son vecteur propre généralisé associé v sont un couple vérifiant la relation où v est un vecteur colonne n × 1 non nul, I la matrice identité de taille n × n, k un entier positif.
Superordinateurvignette|redresse=1.2|Le supercalculateur IBM Blue Gene/P de l'Argonne National Laboratory fonctionne avec utilisant un système de refroidissement standard par air, groupé dans et interconnectés par un réseau de fibre optique à haute vitesse (2007). vignette|redresse=1.2|Le superordinateur Columbia du centre de recherche Ames Research Center de la NASA, composé de Intel Itanium 2, regroupés en de , et exécutant un système d'exploitation Linux (2006).
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Grande DépressionLa Grande Dépression () ou « crise économique des années 1930 », dite encore « crise de 29 », est une longue phase de crise économique et de récession qui frappe l'économie mondiale à partir du krach boursier américain de 1929 jusqu'à la Seconde Guerre mondiale. Précédée par la puissante expansion des années 1920, c'est la plus importante dépression économique du . Elle a été accompagnée d'une forte déflation et d'une explosion du chômage et a poussé les autorités à une profonde réforme des marchés financiers.
Algorithme de Primthumb|right|Arbre couvrant de poids minimum L'algorithme de Prim est un algorithme glouton qui calcule un arbre couvrant minimal dans un graphe connexe pondéré et non orienté. En d'autres termes, cet algorithme trouve un sous-ensemble d'arêtes formant un arbre sur l'ensemble des sommets du graphe initial et tel que la somme des poids de ces arêtes soit minimale. Si le graphe n'est pas connexe, alors l'algorithme détermine un arbre couvrant minimal d'une composante connexe du graphe.
Causes de la Grande DépressionLes causes de la Grande Dépression sont l'ensemble des causes et des mécanismes présidant au déclenchement et à la perpétuation de la Grande Dépression. Dès le déclenchement de la crise, des économistes, historiens et journalistes cherchent à comprendre les origines et les causes de la Grande dépression. Les premiers ouvrages publiés dans les années 1930 sont généralement peu explicatifs et normatifs, et plus descriptifs. Ils se concentrent souvent sur un facteur explicatif, dont notamment la spéculation financière ; c'est le cas de l'ouvrage La Grande Dépression de Lionel Robbins (1934).
Spectre d'un opérateur linéaireEn mathématiques, plus précisément en analyse fonctionnelle, le spectre d'un opérateur linéaire sur un espace vectoriel topologique est l'ensemble de ses valeurs spectrales. En dimension finie, cet ensemble se réduit à l'ensemble des valeurs propres de cet endomorphisme, ou de sa matrice dans une base. En et en mécanique quantique, la notion de spectre s'étend aux opérateurs non bornés fermés. Soit une algèbre de Banach unifère sur le corps des nombres complexes.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.