Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Test unitaireEn programmation informatique, le test unitaire (ou « T.U. », ou « U.T. » en anglais) est une procédure permettant de vérifier le bon fonctionnement d'une partie précise d'un logiciel ou d'une portion d'un programme (appelée « unité » ou « module »). Dans les applications non critiques, l'écriture des tests unitaires a longtemps été considérée comme une tâche secondaire. Cependant, les méthodes Extreme programming (XP) ou Test Driven Development (TDD) ont remis les tests unitaires, appelés « tests du programmeur », au centre de l'activité de programmation.
Système dynamique mesuréUn système dynamique mesuré est un objet mathématique, représentant un espace de phases muni d'une loi d'évolution, particulièrement étudié en théorie ergodique. Un système dynamique mesuré est la donnée d'un espace probabilisé et d'une application mesurable f : X → X. On exige que f préserve la mesure, ce qui veut dire que : Cette propriété très riche permet d'obtenir de puissants théorèmes. Par ailleurs, un théorème affirme qu'il existe, pour toute transformation continue X → X d'un espace topologique compact X, une mesure de probabilité, borélienne, préservant cette transformation.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Condition initialeEn physique ou en mathématique, on définit comme conditions initiales les éléments nécessaires à la détermination de la solution complète et si possible unique d'un problème, éléments qui décrivent l'état du système à l'instant initial, c'est-à-dire l'état de départ. Plus formellement, on appelle « condition initiale » l'espace d'état d'un système étudié à l'instant initial. C'est ce qui permet de déterminer les coefficients des solutions des équations différentielles, par exemple les équations de mouvement des corps.
Test de régressionUn test de régression, ou test de non-régression, est un test ayant pour but de détecter les régressions introduites dans un logiciel après un changement effectué dans celui-ci. Une régression est un défaut qui se produit après une modification d'un logiciel lorsque des fonctionnalités existantes ne sont plus réalisées aussi bien qu'avant.
Hadamard's dynamical systemIn physics and mathematics, the Hadamard dynamical system (also called Hadamard's billiard or the Hadamard–Gutzwiller model) is a chaotic dynamical system, a type of dynamical billiards. Introduced by Jacques Hadamard in 1898, and studied by Martin Gutzwiller in the 1980s, it is the first dynamical system to be proven chaotic. The system considers the motion of a free (frictionless) particle on the Bolza surface, i.e, a two-dimensional surface of genus two (a donut with two holes) and constant negative curvature; this is a compact Riemann surface.
AttracteurDans l'étude des systèmes dynamiques, un attracteur (ou ensemble-limite) est un ensemble d'états vers lequel un système évolue de façon irréversible en l'absence de perturbations. Constituants de base de la théorie du chaos, au moins cinq types sont définis : ponctuel, quasi périodique, périodique, étrange et spatial. Stephen Smale serait à l'origine du terme attracteur.