Catégorie monoïdaleEn mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
Structure algébriqueEn mathématiques, une structure algébrique est définie axiomatiquement par une ou plusieurs opérations sur un ensemble (dites internes), éventuellement muni d’autres opérations (externes) dépendant d’autres ensembles, toutes ces opérations satisfaisant certaines relations telles que l’associativité, la commutativité ou la distributivité. La structure de groupe qui émerge progressivement au , avec une seule opération interne et quelques propriétés se formalise au début du avec une kyrielle de structures d’algèbre générale moins restrictives (monoïde) ou au contraire enrichies par une seconde opération (anneau, corps, algèbre de Boole.
Ouvert (topologie)En mathématiques et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous-ensemble d'un espace topologique qui ne contient aucun point de sa frontière. L'ouvert est l'élément de base d'un espace topologique. Il existe plusieurs définitions des ouverts suivant le type d'espace concerné. Nous reprenons ici la définition pour le cas le plus général à savoir celui des espaces topologiques.
Closed monoidal categoryIn mathematics, especially in , a closed monoidal category (or a monoidal closed category) is a that is both a and a in such a way that the structures are compatible. A classic example is the , Set, where the monoidal product of sets and is the usual cartesian product , and the internal Hom is the set of functions from to . A non- example is the , K-Vect, over a field . Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another.
Catégorie monoïdale tresséeEn mathématiques, une catégorie monoïdale tressée est une catégorie monoïdale particulière, à laquelle on ajoute un analogue de la notion de commutativité. Soit une catégorie monoïdale. On note le produit tensoriel opposé à , c'est-à-dire le bifoncteur défini par . On appelle tressage sur un isomorphisme naturel de vers . Autrement dit, pour tous objets de , induit un isomorphisme Une catégorie monoïdale tressée est dite symétrique si, de plus, .
AlgèbreL'algèbre (de l’arabe الجبر, al-jabr) est une branche des mathématiques qui permet d'exprimer les propriétés des opérations et le traitement des équations et aboutit à l'étude des structures algébriques. Selon l’époque et le niveau d’études considérés, elle peut être décrite comme : une arithmétique généralisée, étendant à différents objets ou grandeurs les opérations usuelles sur les nombres ; la théorie des équations et des polynômes ; depuis le début du , l’étude des structures algébriques (on parle d'algèbre générale ou abstraite).
Ouvert-ferméEn topologie, un ouvert-fermé est un sous-ensemble d'un espace topologique X qui est à la fois ouvert et fermé. Il peut sembler contre-intuitif que de tels ensembles existent, puisqu'au sens usuel, « ouvert » et « fermé » sont antonymes. Mais au sens mathématique, ces deux notions ne sont pas mutuellement exclusives : une partie de X est dite fermée si son complémentaire dans X est ouvert, donc un ouvert-fermé est simplement un ouvert dont le complémentaire est aussi ouvert.
Cartesian monoidal categoryIn mathematics, specifically in the field known as , a where the monoidal ("tensor") product is the is called a cartesian monoidal category. Any with finite products (a "finite product category") can be thought of as a cartesian monoidal category. In any cartesian monoidal category, the terminal object is the monoidal unit. , a monoidal finite coproduct category with the monoidal structure given by the coproduct and unit the initial object is called a cocartesian monoidal category, and any finite coproduct category can be thought of as a cocartesian monoidal category.
Symmetric monoidal categoryIn , a branch of mathematics, a symmetric monoidal category is a (i.e. a category in which a "tensor product" is defined) such that the tensor product is symmetric (i.e. is, in a certain strict sense, naturally isomorphic to for all objects and of the category). One of the prototypical examples of a symmetric monoidal category is the over some fixed field k, using the ordinary tensor product of vector spaces.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .