N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Empilement compactUn empilement compact d'une collection d'objets est un agencement de ces objets de telle sorte qu'ils occupent le moins d'espace possible (donc qu'ils laissent le moins de vide possible). Le problème peut se poser dans un espace (euclidien ou non) de dimension n quelconque, les objets étant eux-mêmes de dimension n. Les applications pratiques sont concernées par les cas (plan et autres surfaces) et (espace ordinaire).
Close-packing of equal spheresIn geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction.
Iterative reconstructionIterative reconstruction refers to iterative algorithms used to reconstruct 2D and 3D images in certain imaging techniques. For example, in computed tomography an image must be reconstructed from projections of an object. Here, iterative reconstruction techniques are usually a better, but computationally more expensive alternative to the common filtered back projection (FBP) method, which directly calculates the image in a single reconstruction step.
Weakly interacting massive particlesEn astrophysique, les WIMPs (acronyme anglais pour Weakly Interacting Massive Particles, pouvant se traduire par « particules massives interagissant faiblement ») sont des particules hypothétiques constituant une solution au problème de la matière noire. En dehors des interactions gravitationnelles, ces particules interagissent très faiblement avec la matière ordinaire (nucléons, électrons), leur section efficace d'interaction est de l'ordre du picobarn.
Magnetic resonance angiographyMagnetic resonance angiography (MRA) is a group of techniques based on magnetic resonance imaging (MRI) to image blood vessels. Magnetic resonance angiography is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions, aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities. MRA is often used to evaluate the arteries of the neck and brain, the thoracic and abdominal aorta, the renal arteries, and the legs (the latter exam is often referred to as a "run-off").
Nombre de contactEn géométrie, le nombre de contact ou nombre de Newton ou nombre de baisers (de l'anglais kissing number) d'un espace est défini comme le plus grand nombre de boules identiques qui peuvent être placées dans cet espace sans qu'elles ne se chevauchent et telles que chacune touche une boule identique commune. Le terme nombre de Newton renvoie à Isaac Newton, l'auteur du problème en trois dimensions. Le problème du nombre de contact consiste à déterminer le plus grand nombre de contact pour des sphères n-dimensionnelles dans l'espace euclidien de dimension n + 1.