Temps de calcul pseudo-polynomialEn informatique théorique, et notamment en théorie de la complexité, un algorithme est appelé pseudo-polynomial si sa complexité en temps est un polynôme en la valeur numérique de l'entrée (mais pas nécessairement en la taille en mémoire de l'entrée). Considérons le problème du test de primalité. On peut vérifier qu'un entier naturel donné n est premier en testant qu'il n'est divisible par aucun des entiers . Cela exige divisions, de sorte que le temps pris par cet algorithme naïf est linéaire en la valeur n .
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Schéma d'approximation en temps entièrement polynomialUn schéma d'approximation en temps entièrement polynomial (FPTAS, pour ) est un algorithme permettant de trouver des solutions approximatives aux problèmes fonctionnels, en particulier aux problèmes d'optimisation. Un FPTAS prend en entrée une instance du problème et un paramètre ε > 0. Il renvoie en sortie une valeur d'au moins fois la valeur correcte, et au plus fois la valeur correcte. Dans le contexte des problèmes d'optimisation, ce qu'on appelle valeur correcte est la valeur de la solution optimale.
Ensemble dominantEn théorie des graphes, un ensemble dominant (ou dominating set en anglais) d'un graphe G = ( S, A ) est un sous-ensemble D de l'ensemble S des sommets tel que tout sommet qui n'appartient pas à D possède au moins une arête d'extrémité un sommet de D. Le problème de l'ensemble dominant est de déterminer, étant donné G et un entier naturel k, si G possède un ensemble dominant d'au plus k sommets. Ce problème est NP-complet.
Largeur arborescenteEn théorie des graphes et en informatique théorique, la largeur arborescente ou largeur d'arbre d'un graphe (treewidth en anglais) est un nombre qui, intuitivement, mesure s'il est proche d'un arbre. Elle peut être définie de plusieurs manières, notamment en utilisant la décomposition arborescente. Souvent, un problème algorithmique facile sur les arbres est en fait facile pour les graphes qui ressemblent à des arbres. Ainsi, ce paramètre est souvent utilisé en algorithmique de graphes, notamment pour les schémas d'approximation polynomiaux et complexité paramétrée.
Arbre couvrantDans le domaine mathématique de la théorie des graphes, un arbre couvrant d'un graphe non orienté et connexe est un arbre inclus dans ce graphe et qui connecte tous les sommets du graphe. De façon équivalente, c'est un sous-graphe acyclique maximal, ou encore, un sous-graphe couvrant connexe minimal. Dans certains cas, le nombre d'arbres couvrants d'un graphe connexe est facilement calculable. Par exemple, si lui-même est un arbre, alors , tandis que si est un n-cycle, alors .
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Polynôme chromatiqueEn mathématiques, plus particulièrement en théorie des graphes, le polynôme chromatique d'un graphe est une fonction polynômiale donnant le nombre de colorations distinctes d'un graphe, en fonction du nombre de couleurs autorisées. Il a été introduit d'abord en 1912 pour les graphes planaires, par George David Birkhoff, qui cherchait à démontrer le théorème des quatre couleurs. Ce polynôme a pour racines tous les entiers positifs ou nuls strictement inférieurs au nombre chromatique du graphe et a pour degré l'ordre du graphe.
Théorèmes du bien-êtreLes deux théorèmes de l'économie du bien-être sont les résultats fondamentaux de la théorie de l'équilibre général telle que formulée par Kenneth Arrow et Gérard Debreu. Obtenus par une démonstration mathématique, ces théorèmes lient certaines hypothèses sur le fonctionnement économique (concurrence pure et parfaite, homogénéité et continuité des fonctions de production et des fonctions de demande...) et la possibilité d'un état optimum de l'allocation des ressources (optimum de Pareto) Énoncé: Tout équilibre général en concurrence pure et parfaite est un optimum de Pareto.