Publication

Physical Properties of High-Temperature Superconductors

Concepts associés (10)
Supraconducteur à haute température
Un supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Supraconductivité
La supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Unconventional superconductor
Unconventional superconductors are materials that display superconductivity which does not conform to conventional BCS theory or its extensions. The superconducting properties of CeCu2Si2, a type of heavy fermion material, were reported in 1979 by Frank Steglich. For a long time it was believed that CeCu2Si2 was a singlet d-wave superconductor, but since the mid 2010s, this notion has been strongly contested. In the early eighties, many more unconventional, heavy fermion superconductors were discovered, including UBe13, UPt3 and URu2Si2.
Superconducting wire
Superconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
Science des matériaux
La science des matériaux repose sur la relation entre les propriétés, la morphologie structurale et la mise en œuvre des matériaux qui constituent les objets qui nous entourent (métaux, polymères, semi-conducteurs, céramiques, composites, etc.). Elle se focalise sur l'étude des principales caractéristiques des matériaux, ainsi que leurs propriétés mécaniques, chimiques, électriques, thermiques, optiques et magnétiques. La science des matériaux est au cœur de beaucoup des grandes révolutions techniques.
Matériau composite
vignette|Multicouche, un exemple de matériau composite. Un matériau composite est un assemblage ou un mélange hétérogène d'au moins deux composants, non miscibles mais ayant une forte capacité d'interpénétration et d'adhésion, dont les propriétés mécaniques se complètent. Le nouveau matériau ainsi constitué possède des propriétés avantageuses que les composants seuls ne possèdent pas. Bien que le terme composite soit moderne, de tels matériaux ont été inventés et abondamment utilisés bien avant l'Antiquité, comme les torchis pour la construction de bâtiments.
Matériau
vignette|Grandes classes de matériaux. Les matériaux minéraux sont des roches, des céramiques ou des verres. Les matériaux métalliques sont des métaux ou des alliages. Un matériau est toute matière utilisée pour réaliser un objet au sens large. Ce dernier est souvent une pièce d'un sous-ensemble. C'est donc une matière sélectionnée à l'origine en raison de propriétés particulières et mise en œuvre en vue d'un usage spécifique.
Superconducting magnet
A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings.
Résistance des matériaux
vignette|Essai de compression sur une éprouvette de béton, une pression croissante est appliquée verticalement sur l'échantillon pendant que deux appareils mesurent les déformations longitudinales et transversales de l'éprouvette. vignette|À l'issue du test, l'éprouvette s'est rompue. Notez la cassure longitudinale. La résistance des matériaux (RDM) est une discipline particulière de la mécanique des milieux continus, permettant le calcul des contraintes et déformations dans les structures des différents matériaux (machines, génie mécanique, bâtiment et génie civil).
Cryogénie
vignette|Bonbonne contenant de l'azote liquide (en anglais, « nitrogen »). La cryogénie est l'étude et la production des basses températures (inférieures à ou 120 K) dans le but de comprendre les phénomènes physiques qui s'y manifestent. La limite de représente la limite à partir de laquelle les gaz de l'air se liquéfient. La cryogénie possède de très nombreuses applications notamment dans les secteurs alimentaire, médical, industriel, physique et de l'élevage.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.