ÉlectroencéphalographieL'électroencéphalographie (EEG) est une méthode d'exploration cérébrale qui mesure l'activité électrique du cerveau par des électrodes placées sur le cuir chevelu souvent représentée sous la forme d'un tracé appelé électroencéphalogramme. Comparable à l'électrocardiogramme qui permet d'étudier le fonctionnement du cœur, l'EEG est un examen indolore et non invasif qui renseigne sur l'activité neurophysiologique du cerveau au cours du temps et en particulier du cortex cérébral soit dans un but diagnostique en neurologie, soit dans la recherche en neurosciences cognitives.
Réseau de neurones (biologie)En neurosciences, un réseau de neurones correspond, schématiquement : Soit à un nombre restreint de différents neurones interconnectés, qui ont une fonction précise, comme le ganglion stomatogastrique qui contrôle l'activité des muscles de l'estomac des crustacés. Soit à un grand nombre de neurones similaires interconnectés, qui ont des fonctions plus cognitives, comme les réseaux corticaux qui permettent entre autres la catégorisation.
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Regroupement hiérarchiqueDans le domaine de l'analyse et de la classification automatique de données, le regroupement hiérarchique est un partitionnement de données ou clustering, au moyen de diverses méthodes, dites « ascendantes » et « descendantes ». Les méthodes dites « descendantes » partent d’une solution générale vers une autre plus spécifique. Les méthodes de cette catégorie démarrent avec une seule classe contenant la totalité puis se divisent à chaque étape selon un critère jusqu’à l’obtention d’un ensemble de classes différentes.
Grille informatiqueUne grille informatique (en anglais, grid) est une infrastructure virtuelle constituée d'un ensemble de ressources informatiques potentiellement partagées, distribuées, hétérogènes, délocalisées et autonomes. Une grille est en effet une infrastructure, c'est-à-dire des équipements techniques d'ordres matériel et logiciel. Cette infrastructure est qualifiée de virtuelle car les relations entre les entités qui la composent n'existent pas sur le plan matériel mais d'un point de vue logique.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
IdéalEn mathématiques, et plus particulièrement en algèbre, un idéal est un sous-ensemble remarquable d'un anneau : c'est un sous-groupe du groupe additif de l'anneau qui est, de plus, stable par multiplication par les éléments de l'anneau. À certains égards, les idéaux s'apparentent donc aux sous-espaces vectoriels — qui sont des sous-groupes additifs stables par une multiplication externe ; à d'autres égards, ils se comportent comme les sous-groupes distingués — ce sont des sous-groupes additifs à partir desquels on peut construire une structure d'anneau quotient.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.