Intérêts composésUn capital est placé à intérêts composés lorsque les intérêts de chaque période sont incorporés au capital pour l'augmenter progressivement et porter intérêts à leur tour. C'est une notion antagoniste à celle d'intérêts simples, où les intérêts ne sont pas réinvestis pour devenir à leur tour porteurs d'intérêts. Pour calculer des intérêts composés annuellement, il faut utiliser une suite géométrique, dont la formule est : où est la valeur finale, la valeur initiale, le taux d'intérêt sur une période, et le nombre de périodes (d'années, semestres, trimestres, etc.
Computational electromagneticsComputational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment. It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Intégrale de cheminUne 'intégrale de chemin' (« path integral » en anglais) est une intégrale fonctionnelle, c'est-à-dire que l'intégrant est une fonctionnelle et que la somme est prise sur des fonctions, et non sur des nombres réels (ou complexes) comme pour les intégrales ordinaires. On a donc ici affaire à une intégrale en dimension infinie. Ainsi, on distinguera soigneusement l'intégrale de chemin (intégrale fonctionnelle) d'une intégrale ordinaire calculée sur un chemin de l'espace physique, que les mathématiciens appellent intégrale curviligne.
Convection–diffusion equationThe convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
Claquage (électronique)vignette|Ralenti Modification de Claquage, Université d'Ariel En électronique ou électrotechnique, le claquage est un phénomène qui se produit dans un isolant quand le champ électrique est plus important que ce que peut supporter cet isolant. Il se forme alors un arc électrique. Dans un condensateur, lorsque la tension atteint une valeur suffisante pour qu'un courant s'établisse au travers de l'isolant (ou diélectrique), cette tension critique est appelée tension de claquage.
Équations de Lagrangevignette|Joseph-Louis Lagrange Les équations de Lagrange, découvertes en 1788 par le mathématicien Joseph-Louis Lagrange, sont une reformulation de la mécanique classique. Il s'agit d'une reformulation de l'équation de Newton, qui ne fait pas intervenir les forces de réaction. Pour cela, on exprime les contraintes que subit la particule étudiée sous la forme d'équations du type : Il n'y a qu'une équation si le mouvement est contraint à une surface, deux s'il est contraint à une courbe.
Matrice SEn physique, la matrice S ou matrice de diffusion (plus rarement matrice de collision, ou S-matrice) est une construction mathématique qui relie l'état initial et l'état final d'un système physique soumis à un processus de diffusion/collision (). Elle est utilisée en mécanique quantique, en théorie de la diffusion des ondes et des particules, ainsi qu'en théorie quantique des champs. Plus particulièrement, en physique des particules, dans une expérience de collision, des particules sont préparées dans un état initial, puis accélérées afin de subir des collisions à hautes énergies.
Physique médicaleLa physique médicale est une branche de la physique appliquée qui regroupe les applications de la physique en médecine. Elle concerne essentiellement les champs de la radiothérapie, de l', de la médecine nucléaire et de la radioprotection. Le physicien médical, anciennement appelé radiophysicien ou physicien d'hôpital, est la personne experte des activités de physique médicale. Il est responsable des aspects techniques relatifs à la production et l'utilisation médicale des rayonnements ionisants ou non au sein de l'établissement de santé, ainsi que de l'optimisation et/ou de la planification des tâches associées à la physique médicale.