Type énuméréEn programmation informatique, un type énuméré (appelé souvent énumération ou juste enum, parfois type énumératif ou liste énumérative) est un type de données qui consiste en un ensemble de valeurs constantes. Ces différentes valeurs représentent différents cas ; on les nomme énumérateurs. Lorsqu'une variable est de type énuméré, elle peut avoir comme valeur n'importe quel cas de ce type énuméré. Un exemple typique est la représentation de cartes à jouer ordinaires : la suite ("couleur") ainsi que la hauteur (nombre ou figure) de la carte peuvent être représentés par des énumérations.
Théorie des ensemblesLa théorie des ensembles est une branche des mathématiques, créée par le mathématicien allemand Georg Cantor à la fin du . La théorie des ensembles se donne comme primitives les notions d'ensemble et d'appartenance, à partir desquelles elle reconstruit les objets usuels des mathématiques : fonctions, relations, entiers naturels, relatifs, rationnels, nombres réels, complexes... C'est pourquoi la théorie des ensembles est considérée comme une théorie fondamentale dont Hilbert a pu dire qu'elle était un « paradis » créé par Cantor pour les mathématiciens.
Ensemblevignette|Ensemble de polygones dans un diagramme d'Euler En mathématiques, un ensemble désigne intuitivement un rassemblement d’objets distincts (les éléments de l'ensemble), « une multitude qui peut être comprise comme une totalité » pour paraphraser Georg Cantor qui est à l'origine de la théorie des ensembles. Dans une approche axiomatique, la théorie des ensembles est une théorie de l'appartenance (un élément d'un ensemble est dit « appartenir » à cet ensemble).
Ensemble videvignette|Notation de l'ensemble vide. En mathématiques, l'ensemble vide est l'ensemble ne contenant aucun élément. L'ensemble vide peut être noté d'un O barré, à savoir ∅ ou simplement { }, qui est une paire d'accolades ne contenant qu'une espace, pour représenter un ensemble qui ne contient rien. La notation ∅ a été introduite par André Weil, dans le cadre de l'institution de notations par le groupe Bourbaki. Von Neumann dans son article de 1923, qui est l'une des premières références qui l'aborde, le note O.
Action de groupe (mathématiques)En mathématiques, une action d'un groupe sur un ensemble est une loi de composition externe du groupe sur l'ensemble, vérifiant des conditions supplémentaires. Plus précisément, c'est la donnée, pour chaque élément du groupe, d'une permutation de l'ensemble, de telle manière que toutes ces bijections se composent de façon compatible avec la loi du groupe. Étant donné un ensemble E et un groupe G, dont la loi est notée multiplicativement et dont l'élément neutre est noté e, une action (ou opération) de G sur E est une application : vérifiant chacune des 2 propriétés suivantes : On dit également que G opère (ou agit) sur l'ensemble E.
Locomotive électriqueUne locomotive électrique est une locomotive mue par des moteurs électriques. Les moteurs sont alimentés par une ligne de contact aérienne, par un troisième rail latéral (notamment sur les métros), par des accumulateurs ou, pour les locomotives Diesel-électriques, grâce à un moteur Diesel entraînant un alternateur. La première locomotive électrique connue, alimentée par des piles électriques, a été construite en 1837 par un chimiste écossais d'Aberdeen, Robert Davidson.
Inférence de typesL'inférence de types est un mécanisme qui permet à un compilateur ou un interpréteur de rechercher automatiquement les types associés à des expressions, sans qu'ils soient indiqués explicitement dans le code source. Il s'agit pour le compilateur ou l'interpréteur de trouver le type le plus général que puisse prendre l'expression. Les avantages à disposer de ce mécanisme sont multiples : le code source est plus aéré, le développeur n'a pas à se soucier de retenir les noms de types, l'interpréteur fournit un moyen au développeur de vérifier (en partie) le code qu'il a écrit et le programme est peu modifié en cas de changement de structure de données.
Conversion de typeEn informatique la conversion de type, le transtypage ou la coercition (cast en anglais) est le fait de convertir une valeur d'un type (source) dans un autre (cible). On distingue trois formes de conversion (dont un seul mérite vraiment le nom de conversion) suivant la relation de sous-typage existant entre les types source et cible : la conversion entre types incomparables ; la coercition ascendante (transtypage vers le haut) ; la coercition descendante (transtypage vers le bas). C'est la coercition la plus ancienne historiquement.
Composite data typeIn computer science, a composite data type or compound data type is any data type which can be constructed in a program using the programming language's primitive data types and other composite types. It is sometimes called a structure or aggregate type, although the latter term may also refer to arrays, lists, etc. The act of constructing a composite type is known as composition. Composite data types are often contrasted with scalar variables. A struct is C's and C++'s notion of a composite type, a datatype that composes a fixed set of labeled fields or members.
Type récursifEn programmation informatique et théorie des types, un type récursif est un type de données dont la définition fait appel au type lui‐même, de façon récursive. Cela permet entre autres des structures de données qui contiennent des sous‐structures du même type. Cette notion s'applique naturellement dans l'étude des listes et des arbres. Type algébrique de données Les types algébriques sont de loin la forme la plus courante de types récursifs. Un exemple classique est le type liste.