3D scanning3D scanner is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance (e.g. color). The collected data can then be used to construct digital 3D models. A 3D scanner can be based on many different technologies, each with its own limitations, advantages and costs. Many limitations in the kind of objects that can be digitised are still present. For example, optical technology may encounter many difficulties with dark, shiny, reflective or transparent objects.
TrackingVideo tracking is the process of locating a moving object (or multiple objects) over time using a camera. It has a variety of uses, some of which are: human-computer interaction, security and surveillance, video communication and compression, augmented reality, traffic control, medical imaging and video editing. Video tracking can be a time-consuming process due to the amount of data that is contained in video. Adding further to the complexity is the possible need to use object recognition techniques for tracking, a challenging problem in its own right.
Polygon partitionIn geometry, a partition of a polygon is a set of primitive units (e.g. squares), which do not overlap and whose union equals the polygon. A polygon partition problem is a problem of finding a partition which is minimal in some sense, for example a partition with a smallest number of units or with units of smallest total side-length. Polygon partitioning is an important class of problems in computational geometry. There are many different polygon partition problems, depending on the type of polygon being partitioned and on the types of units allowed in the partition.
Grundy numberIn graph theory, the Grundy number or Grundy chromatic number of an undirected graph is the maximum number of colors that can be used by a greedy coloring strategy that considers the vertices of the graph in sequence and assigns each vertex its first available color, using a vertex ordering chosen to use as many colors as possible. Grundy numbers are named after P. M. Grundy, who studied an analogous concept for directed graphs in 1939. The undirected version was introduced by .
Point in polygonIn computational geometry, the point-in-polygon (PIP) problem asks whether a given point in the plane lies inside, outside, or on the boundary of a polygon. It is a special case of point location problems and finds applications in areas that deal with processing geometrical data, such as computer graphics, computer vision, geographic information systems (GIS), motion planning, and computer-aided design (CAD). An early description of the problem in computer graphics shows two common approaches (ray casting and angle summation) in use as early as 1974.
Théorème isopérimétriqueEn mathématiques, et plus précisément en géométrie, un théorème isopérimétrique est une généralisation des résultats plus élémentaires d'isopérimétrie montrant par exemple que le disque est, à périmètre donné, la figure ayant la plus grande aire. Les questions traitées par cette généralisation concernent les compacts d'un espace métrique muni d'une mesure. Un exemple simple est donné par les compacts d'un plan euclidien. Les compacts concernés sont ceux de mesures finies ayant une frontière aussi de mesure finie.
Polygone de PetrieEn géométrie, un polygone de Petrie est donné par la projection orthogonale d'un polyèdre (ou même d'un polytope au sens général) sur un plan, de sorte à former un polygone régulier, avec tout le reste de la projection à l’intérieur. Ces polygones et graphes projetés sont utiles pour visualiser la structure et les symétries de polytopes aux nombreuses dimensions. Chaque paire de côtés consécutifs appartient à une même face du polyèdre, mais pas trois.
ReachabilityIn graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex can reach a vertex (and is reachable from ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with and ends with . In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric ( reaches iff reaches ).
Partition binaire de l'espacethumb|Partition binaire de l'espace (haut) et arbre BSP correspondant (bas). L'espace contient des segments {A, B1, B2, C1, C2, D1, D2, D3}. Le nœud racine contient le segment A ; les deux sous-arbres correspondent aux zones de part et d'autre de A. thumb|Partition binaire d'un espace à trois dimensions pour la construction d'un arbre k-d. La partition binaire de l'espace (binary space partitioning ou BSP) est un système utilisé pour diviser l'espace en zones convexes.