Exigence (ingénierie)Une est, dans le domaine de l'ingénierie, un besoin, une nécessité, une attente auquel un produit ou un service doit répondre ou une contrainte qu'il doit satisfaire. L'exigence peut être exprimée par une partie prenante (utilisateur, client, commercial, analyste de marchés, gestionnaire de produits, etc.) ou déterminée par les processus d'ingénierie et en particulier les activités d'études. L'approche commune à tous les domaines d'ingénierie est de définir les besoins, d'envisager des solutions, et de livrer la solution la plus appropriée.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Analyse des exigencesEn ingénierie des systèmes et en ingénierie logicielle, l'analyse des exigences comprend les tâches qui ont pour but de déterminer les exigences d'un système nouveau ou à modifier, en prenant en compte le conflit possible entre les exigences de diverses parties prenantes, telles que les utilisateurs. L'analyse des exigences est critique pour le succès d'un projet. Les interviews de parties prenantes sont une méthode communément employée dans l'analyse des exigences.
Valeur absolueEn mathématiques, la valeur absolue (parfois appelée module, c'est-à-dire ) d'un nombre réel est sa valeur numérique considérée sans tenir compte de son signe. On peut la comprendre comme sa distance à zéro ; ou comme sa valeur quantitative, à laquelle le signe ajoute une idée de polarité ou de sens (comme le sens d'un vecteur). Par exemple, la valeur absolue de –4 est 4, et celle de +4 est 4. La valeur absolue se note par des barres verticales : ainsi, on écrit : |–4| = |+4| = 4.
Conjuguévignette|Représentation géométrique (diagramme d'Argand) de z et de son conjugué z̅ dans le plan complexe. Le conjugué est obtenu par symétrie par l'axe des réels. En mathématiques, le conjugué d'un nombre complexe z est le nombre complexe formé de la même partie réelle que z mais de partie imaginaire opposée. Le conjugué d'un nombre complexe , où a et b sont nombres réels, est noté ou . Dans le plan, le point d'affixe est le symétrique du point d'affixe par rapport à l'axe des abscisses. Le module du conjugué reste inchangé.
Requirements engineeringRequirements engineering (RE) is the process of defining, documenting, and maintaining requirements in the engineering design process. It is a common role in systems engineering and software engineering. The first use of the term requirements engineering was probably in 1964 in the conference paper "Maintenance, Maintainability, and System Requirements Engineering", but it did not come into general use until the late 1990s with the publication of an IEEE Computer Society tutorial in March 1997 and the establishment of a conference series on requirements engineering that has evolved into the International Requirements Engineering Conference.
Business requirementsBusiness requirements, also known as stakeholder requirements specifications (StRS), describe the characteristics of a proposed system from the viewpoint of the system's end user like a CONOPS. Products, systems, software, and processes are ways of how to deliver, satisfy, or meet business requirements. Consequently, business requirements are often discussed in the context of developing or procuring software or other systems. Three main reasons for such discussions: A common practice is to refer to objectives, or expected benefits, as 'business requirements.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Régression (statistiques)En mathématiques, la régression recouvre plusieurs méthodes d’analyse statistique permettant d’approcher une variable à partir d’autres qui lui sont corrélées. Par extension, le terme est aussi utilisé pour certaines méthodes d’ajustement de courbe. En apprentissage automatique, on distingue les problèmes de régression des problèmes de classification. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Gestion des exigencesLa gestion des exigences consiste à gérer les exigences hiérarchisées d'un projet, à détecter les incohérences entre elles et à assurer leur traçabilité. Dans de nombreux métiers, l'expression de ces exigences donne lieu à une quantité de documents dont la cohérence et la qualité conditionnent le succès ou l'échec des projets concernés. Il existe des logiciels spécialisés qui permettent d'aider à la réalisation de cette activité.