PseudoconvexityIn mathematics, more precisely in the theory of functions of several complex variables, a pseudoconvex set is a special type of open set in the n-dimensional complex space Cn. Pseudoconvex sets are important, as they allow for classification of domains of holomorphy. Let be a domain, that is, an open connected subset. One says that is pseudoconvex (or Hartogs pseudoconvex) if there exists a continuous plurisubharmonic function on such that the set is a relatively compact subset of for all real numbers In other words, a domain is pseudoconvex if has a continuous plurisubharmonic exhaustion function.
Fonction analytiquevignette|Tracé du module de la fonction gamma (son prolongement analytique) dans le plan complexe. En mathématiques, et plus précisément en analyse, une fonction analytique est une fonction d'une variable réelle ou complexe qui est développable en série entière au voisinage de chacun des points de son domaine de définition, c'est-à-dire que pour tout de ce domaine, il existe une suite donnant une expression de la fonction, valable pour tout assez proche de , sous la forme d'une série convergente : Toute fonction analytique est dérivable de dérivée analytique, ce qui implique que toute fonction analytique est indéfiniment dérivable, mais la réciproque est fausse en analyse réelle.
Théorème intégral de CauchyEn analyse complexe, le théorème intégral de Cauchy, ou de Cauchy-Goursat, est un important résultat concernant les intégrales curvilignes de fonctions holomorphes dans le plan complexe. D'après ce théorème, si deux chemins différents relient les deux mêmes points et si une fonction est holomorphe « entre » les deux chemins, alors les deux intégrales de cette fonction suivant ces chemins sont égales. Le théorème est habituellement formulé pour les lacets (c'est-à-dire les chemins dont le point de départ est confondu avec le point d'arrivée) de la manière suivante.
Fonction bornéedroite|vignette| Schéma d'une fonction bornée (rouge) et d'une fonction non bornée (bleu). Intuitivement, le graphe d'une fonction bornée reste dans une bande horizontale, contrairement au graphe d'une fonction non bornée. En mathématiques, une fonction est dite bornée si est borné. Pour une fonction f définie sur un ensemble X et à valeurs réelles ou complexes, cela revient à dire qu'il existe un nombre réel M tel que pour tout x dans X, Une fonction à valeurs réelles est dite majorée ( minorée) si l'ensemble de ses valeurs possède un majorant ( minorant) réel.
Topologie faibleEn mathématiques, la topologie faible d'un espace vectoriel topologique E est une topologie définie sur E au moyen de son dual topologique E'. On définit également sur E' une topologie dite faible-* au moyen de E. Dans tout cet article, sauf mention contraire, on notera pour et forme linéaire sur . Soient E un espace vectoriel normé (réel ou complexe), ou plus généralement un espace vectoriel topologique et E' son dual topologique, c’est-à-dire l'ensemble des formes linéaires continues sur E.
Analyse réelleL'analyse réelle est la branche de l'analyse qui étudie les ensembles de réels et les fonctions de variables réelles. Elle étudie des concepts comme les suites et leurs limites, la continuité, la dérivation, l'intégration et les suites de fonctions. La présentation de l'analyse réelle dans les ouvrages avancés commence habituellement avec des démonstrations simples de résultats de la théorie naïve des ensembles, une définition claire de la notion de fonction, une introduction aux entiers naturels et la démonstration importante du raisonnement par récurrence.
Function of a real variableIn mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers , or a subset of that contains an interval of positive length. Most real functions that are considered and studied are differentiable in some interval. The most widely considered such functions are the real functions, which are the real-valued functions of a real variable, that is, the functions of a real variable whose codomain is the set of real numbers.
Espace de MontelEn topologie des espaces vectoriels, on appelle espace de Montel un espace vectoriel topologique localement convexe séparé, tonnelé et dont tout fermé borné est compact. Le nom provient du mathématicien Paul Montel. Tout espace de Montel est réflexif et quasi complet. Son dual fort est un espace de Montel. Le quotient d'un espace de Fréchet-Montel par un sous-espace fermé peut n'être pas réflexif, et a fortiori ne pas être un espace de Montel (en revanche, le quotient d'un espace de Fréchet-Schwartz par un sous-espace fermé est un espace de Fréchet-Montel).
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Constante de GaussEn mathématiques, la constante de Gauss, notée G, est l'inverse de la moyenne arithmético-géométrique de 1 et de la racine carrée de 2 : L'éponyme de cette constante est le mathématicien allemand Carl Friedrich Gauss (-) car il a découvert le à Brunswick que : La constante de Gauss peut être exprimée grâce à la valeur de la fonction bêta en (1/4, 1/2) : soit encore, grâce à la valeur de la fonction gamma en 1/4 : et puisque π et Γ(1/4) sont algébriquement indépendants, la constante de Gauss est transcendant