Système ferméUn système fermé est un système . Le terme renvoie souvent à un système idéalisé où la clôture est parfaite. En réalité, aucun système ne peut être complètement fermé ; il y a seulement divers degrés de fermeture. En thermodynamique, un système fermé peut échanger de l'énergie sous forme de chaleur et/ou de travail, mais pas de la matière, avec ses environnements. En revanche un système isolé ne peut pas échanger de chaleur, de travail ou de la matière avec son environnement, tandis qu'un système ouvert peut échanger de la chaleur, du travail et de la matière.
Quantum programmingQuantum programming is the process of designing or assembling sequences of instructions, called quantum circuits, using gates, switches, and operators to manipulate a quantum system for a desired outcome or results of a given experiment. Quantum circuit algorithms can be implemented on integrated circuits, conducted with instrumentation, or written in a programming language for use with a quantum computer or a quantum processor. With quantum processor based systems, quantum programming languages help express quantum algorithms using high-level constructs.
Superconducting quantum computingSuperconducting quantum computing is a branch of solid state quantum computing that implements superconducting electronic circuits using superconducting qubits as artificial atoms, or quantum dots. For superconducting qubits, the two logic states are the ground state and the excited state, denoted respectively. Research in superconducting quantum computing is conducted by companies such as Google, IBM, IMEC, BBN Technologies, Rigetti, and Intel. Many recently developed QPUs (quantum processing units, or quantum chips) utilize superconducting architecture.
Informatique quantiqueL'informatique quantique est le sous-domaine de l'informatique qui traite des calculateurs quantiques et des associés. La notion s'oppose à celle d'informatique dite « classique » n'utilisant que des phénomènes de physique classique, notamment de l'électricité (exemple du transistor) ou de mécanique classique (exemple historique de la machine analytique). En effet, l'informatique quantique utilise également des phénomènes de la mécanique quantique, à savoir l'intrication quantique et la superposition.
Groupe de renormalisationEn physique statistique, le groupe de renormalisation est un ensemble de transformations qui permettent de transformer un hamiltonien en un autre hamiltonien par élimination de degrés de liberté tout en laissant la fonction de partition invariante. Il s'agit plus exactement d'un semi-groupe, les transformations n'étant pas inversibles. Le groupe de renormalisation permet de calculer les exposants critiques d'une transition de phase. Il permet aussi de prédire la transition Berezinsky-Kosterlitz-Thouless.
Cryptographie quantiqueLa cryptographie quantique consiste à utiliser les propriétés de la physique quantique pour établir des protocoles de cryptographie qui permettent d'atteindre des niveaux de sécurité qui sont prouvés ou conjecturés non atteignables en utilisant uniquement des phénomènes classiques (c'est-à-dire non-quantiques). Un exemple important de cryptographie quantique est la distribution quantique de clés, qui permet de distribuer une clé de chiffrement secrète entre deux interlocuteurs distants, tout en assurant la sécurité de la transmission grâce aux lois de la physique quantique et de la théorie de l'information.
DissipationEn physique, la dissipation désigne le phénomène selon lequel un système dynamique (onde, oscillation...) perd de l'énergie au cours du temps. Cette perte est principalement due aux frottements et aux turbulences, et l'énergie correspondante est alors dégradée en chaleur, une forme d'énergie qui ne pourra pas être intégralement retransformée en énergie mécanique, comme l'affirme le deuxième principe de la thermodynamique. Amortissement Dissipateur thermique Entropie Hystérésis Théorème de fluctuation-dissi
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.
Équation différentielle raideUne équation différentielle raide est une équation différentielle dont la sensibilité aux paramètres va rendre difficile la résolution par des méthodes numériques explicites. Plusieurs explications, aussi bien physiques que mathématiques, peuvent permettre d'appréhender la notion de raideur, qui reste difficilement formulable. Il existe plusieurs définitions formelles de la raideur d'une équation différentielle. Une des plus simples est celle de Curtiss et Hirschfelder : Une formulation plus mathématique passe par le comportement des valeurs propres liés au système : où est le spectre de .
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).