Loi de réciprocité d'ArtinEn mathématiques, la 'loi de réciprocité d'Artin' est un résultat important de théorie des nombres établi par Emil Artin dans une série d'articles publiés entre 1924 et 1930. Au cœur de la théorie du corps de classe, la réciprocité d'Artin tire son nom d'une parenté avec la réciprocité quadratique introduite par Gauss, et d'autres lois d'expression similaire, la réciprocité d'Eisenstein, de Kummer, ou de Hilbert. Une des motivations initiales derrière ce résultat était le neuvième problème de Hilbert, auquel la réciprocité d'Artin apporte une réponse partielle.
Q-symbole de PochhammerEn combinatoire, le q-symbole de Pochhammer est un symbole permettant de noter facilement certains produits. C'est l'élément de base des q-analogues. C'est le q-analogue du symbole de Pochhammer défini par Leo Pochhammer. Le q-symbole de Pochhammer est : avec On peut étendre la notation à des produits infinis : On note parfois , lorsqu'il est clair que la variable est q. Un grand nombre de séries génératrices représentant des partitions peuvent être exprimées de façon compacte avec ces symboles.
Vecteur de WittLes vecteurs de Witt sont des objets mathématiques, généralement décrits comme des suites infinies de nombres (ou plus généralement d'éléments d'un anneau). Ils ont été introduits par Ernst Witt en 1936, afin de décrire les extensions non ramifiées des corps de nombres p-adiques. Ces vecteurs sont dotés d'une structure d'anneau ; on parle donc de l’anneau des vecteurs de Witt. Ils apparaissent aujourd'hui dans plusieurs branches de la géométrie algébrique et arithmétique, en théorie des groupes et en physique théorique.
Caractère de HeckeEn théorie des nombres, un caractère de Hecke est une généralisation d'un caractère de Dirichlet, introduit par Erich Hecke pour construire une classe de fonctions L plus importante que les fonctions L de Dirichlet, et un cadre naturel pour les fonctions zêta de Dedekind et certaines autres qui ont des fonctions fonctionnelles analogues à celle de la fonction zêta de Riemann. Un nom parfois utilisé pour le caractère Hecke est le terme allemand Größencharakter (souvent écrit Grössencharakter, Grossencharacter, etc.
Problème du nombre de classes pour les corps quadratiques imaginairesEn mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont l'anneau des entiers a un nombre de classes égal à n. C'est une question de calcul effectif. La première démonstration (Hans Heilbronn, 1934) qu'une telle liste est finie ne fournissait pas, même en théorie, un moyen de la calculer (voir Résultats effectifs en théorie des nombres).
Loi de réciprocité quadratiqueEn mathématiques, en particulier en théorie des nombres, la loi de réciprocité quadratique, établit des liens entre les nombres premiers ; plus précisément, elle décrit la possibilité d'exprimer un nombre premier comme un carré modulo un autre nombre premier. Conjecturée par Euler et reformulée par Legendre, elle a été correctement démontrée pour la première fois par Gauss en 1801.
Série de PuiseuxEn mathématiques, les séries de Puiseux sont une généralisation des séries formelles, introduites pour la première fois par Isaac Newton en 1676 et redécouvertes par Victor Puiseux en 1850, qui permet à l'exposant de l'indéterminée d'être négatif ou fractionnel (tout en étant, pour une série donnée, borné inférieurement et de dénominateur borné). Une série de Puiseux d'indéterminée T est une série formelle de Laurent en T (où n est un entier strictement positif) ; elle peut donc s'écrire : avec k entier relatif.
Toric varietyIn algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable.
Diophantine geometryIn mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry. Four theorems in Diophantine geometry which are of fundamental importance include: Mordell–Weil theorem Roth's theorem Siegel's theorem Faltings's theorem Serge Lang published a book Diophantine Geometry in the area in 1962, and by this book he coined the term "Diophantine Geometry".
Anneau adéliqueEn mathématiques et dans la théorie des nombres, l'anneau adélique, ou anneau des adèles, est un anneau topologique contenant le corps des nombres rationnels (ou, plus généralement, un corps de nombres algébriques), construit à l'aide de toutes les complétions du corps. Le mot « adèle » est une abréviation pour « additive idele » (« idèle additive »). . Les adèles étaient appelées vecteurs de valuation ou répartitions avant 1950.