Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.
Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
LanthanideLes lanthanides sont une famille du tableau périodique comprenant les allant du lanthane () au lutécium (). Avec le scandium et l'yttrium, ces éléments font partie des terres rares. Ils tirent leur nom du lanthane, premier de la famille, en raison de leurs propriétés chimiques très semblables à ce dernier, du moins pour les plus légers d'entre eux. On les désigne parfois sous le symbole chimique collectif Ln, qui représente alors n'importe quel lanthanide. Ce sont tous des éléments du , hormis le lutécium, qui appartient au .
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
SupraconductivitéLa supraconductivité, ou supraconduction, est un phénomène physique caractérisé par l'absence de résistance électrique et l'expulsion du champ magnétique — l'effet Meissner — à l'intérieur de certains matériaux dits supraconducteurs. La supraconductivité découverte historiquement en premier, et que l'on nomme communément supraconductivité conventionnelle, se manifeste à des températures très basses, proches du zéro absolu (). La supraconductivité permet notamment de transporter de l'électricité sans perte d'énergie.
Corrélation électroniqueDans les calculs quantique de structure électronique, le terme de corrélation électronique décrit une part de l'énergie d'interaction entre électrons lié à leur influence mutuelle. Ce terme d’interaction représente la différence entre une solution Hartree Fock (sur une base de déterminants de Slater, antisymétrisée vis-à-vis de l'échange de 2 électrons) et la solution exacte du problème (voir figure ci-dessous). Dans la méthode de Hartree-Fock en chimie quantique, la fonction d'onde antisymétrique est approximée par un seul déterminant de Slater.
Superconducting wireSuperconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market. Superconducting wire's advantages over copper or aluminum include higher maximum current densities and zero power dissipation.
ChalcogèneLe du tableau périodique, dit des chalcogènes (du grec ancien chalcos « minerais » et gena « naissance » et prononcé /kalkɔʒɛn/), autrefois appelé groupe B dans l'ancien système IUPAC utilisé en Europe et groupe A dans le système CAS nord-américain, contient les éléments chimiques de la de ce tableau : {| class="wikitable" style="text-align:left" |- ! Période ! colspan="2" | Élément chimique ! Z ! Famille d'éléments ! Configuration électronique |- | style="text-align:center" | 2 ! O | Oxygène | style="text-a
Théorie du champ moyen dynamiqueLa théorie du champ moyen dynamique (DMFT) est une méthode utilisée pour déterminer la structure électronique de systèmes fortement corrélés. Dans ces systèmes, les fortes corrélations électron-électron rendent impossible le traitement de chaque électron comme une particule indépendante agissant dans un potentiel effectif, comme c'est usuellement le cas dans des calculs de structure de bandes conventionnels comme en théorie de la fonctionnelle de la densité.
Strongly correlated materialStrongly correlated materials are a wide class of compounds that include insulators and electronic materials, and show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions, heavy fermion behavior, half-metallicity, and spin-charge separation. The essential feature that defines these materials is that the behavior of their electrons or spinons cannot be described effectively in terms of non-interacting entities.