Facteur de puissanceLe facteur de puissance est une caractéristique d'un récepteur électrique qui rend compte de son efficacité pour consommer de la puissance lorsqu'il est traversé par un courant. Pour un dipôle électrique alimenté en régime de courant variable au cours du temps (sinusoïdal ou non), il est égal à la puissance active P consommée par ce dipôle, divisée par le produit des valeurs efficaces du courant I et de la tension U (puissance apparente S). Il est toujours compris entre 0 et 1.
Astuce du noyauEn apprentissage automatique, l'astuce du noyau, ou kernel trick en anglais, est une méthode qui permet d'utiliser un classifieur linéaire pour résoudre un problème non linéaire. L'idée est de transformer l'espace de représentation des données d'entrées en un espace de plus grande dimension, où un classifieur linéaire peut être utilisé et obtenir de bonnes performances. La discrimination linéaire dans l'espace de grande dimension (appelé aussi espace de redescription) est équivalente à une discrimination non linéaire dans l'espace d'origine.
Radial basis function kernelIn machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification. The RBF kernel on two samples and x', represented as feature vectors in some input space, is defined as may be recognized as the squared Euclidean distance between the two feature vectors. is a free parameter.
Positive-definite kernelIn operator theory, a branch of mathematics, a positive-definite kernel is a generalization of a positive-definite function or a positive-definite matrix. It was first introduced by James Mercer in the early 20th century, in the context of solving integral operator equations. Since then, positive-definite functions and their various analogues and generalizations have arisen in diverse parts of mathematics.
Noyau polynomialEn apprentissage automatique, le noyau polynomial est une fonction noyau couramment utilisée avec les machines à vecteurs de support (SVMs) et d'autres modèles à noyaux. Il représente la similarité des vecteurs (échantillons d'apprentissage) dans un espace de degré polynomial plus grand que celui des variables d'origine, ce qui permet un apprentissage de modèles non-linéaires. Intuitivement, le noyau polynomial ne tient pas compte uniquement des propriétés des échantillons d'entrée afin de déterminer leur similitude, mais aussi des combinaisons de ceux-ci.
PhaseurEn physique et en ingénierie, un phaseur est une représentation d'une fonction sinusoïdale dans laquelle l'amplitude (A), la phase (θ) et la pulsation (ω) (sachant que ω = 2πf) ne dépendent pas du temps. Il s'agit d'une application d'un concept plus général appelé représentation analytique. Les phaseurs permettent de réduire la dépendance de ces trois paramètres à trois facteurs indépendants, ce qui simplifie certains calculs.
Harmonique (électricité)Les courants harmoniques sont les composantes sinusoïdales d'un courant électrique périodique décomposé en série de Fourier. Les harmoniques ont une fréquence multiple de la fréquence fondamentale, généralement de 50 ou , dans les réseaux électriques. Autrement dit, les harmoniques sont une description mathématique de la distorsion d'un signal a priori sinusoïdal. De même, les tensions harmoniques sont les composantes sinusoïdales d'une tension électrique périodique décomposée en série Fourier.
Signal sinusoïdalthumb|upright|Signal sinusoïdal simple. Un signal sinusoïdal est un signal continu (onde) dont l’amplitude, observée à un endroit précis, est une fonction sinusoïdale du temps, définie à partir de la fonction sinus. La courbe associée s'appelle une sinusoïde (voir Figure 1). Un signal sinusoïdal est caractérisé par son amplitude maximale et sa fréquence.
Domaine temporelLe domaine temporel se rapporte à l'analyse de fonctions mathématiques ou de signaux physiques modélisant une variation quelconque au cours du temps. En domaine temporel, la valeur de la fonction ou du signal est connue, soit en quelques points discrets de la durée d'analyse, ou éventuellement, pour tous les nombres réels. L'oscilloscope est parmi les outils usuels permettant de visualiser les signaux physiques du domaine temporel. Domaine fréquentiel Temps (physique) Catégorie:Analyse du signal Catégorie:
Estimation par noyauEn statistique, l’estimation par noyau (ou encore méthode de Parzen-Rosenblatt ; en anglais, kernel density estimation ou KDE) est une méthode non-paramétrique d’estimation de la densité de probabilité d’une variable aléatoire. Elle se base sur un échantillon d’une population statistique et permet d’estimer la densité en tout point du support. En ce sens, cette méthode généralise astucieusement la méthode d’estimation par un histogramme. Si est un échantillon i.i.d.