Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Linear time-invariant systemIn system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined below. These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = (x ∗ h)(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication).
Complexité en espaceEn algorithmique, la complexité en espace est une mesure de l'espace utilisé par un algorithme, en fonction de propriétés de ses entrées. L'espace compte le nombre maximum de cases mémoire utilisées simultanément pendant un calcul. Par exemple le nombre de symboles qu'il faut conserver pour pouvoir continuer le calcul. Usuellement l'espace que l'on prend en compte lorsque l'on parle de l'espace nécessaire pour des entrées ayant des propriétés données est l'espace nécessaire le plus grand parmi ces entrées ; on parle de complexité en espace dans le pire cas.
Definite matrixIn mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of Positive semi-definite matrices are defined similarly, except that the scalars and are required to be positive or zero (that is, nonnegative).
Décomposition d'une matrice en éléments propresEn algèbre linéaire, la décomposition d'une matrice en éléments propres est la factorisation de la matrice en une forme canonique où les coefficients matriciels sont obtenus à partir des valeurs propres et des vecteurs propres. Un vecteur non nul v à N lignes est un vecteur propre d'une matrice carrée A à N lignes et N colonnes si et seulement si il existe un scalaire λ tel que : où λ est appelé valeur propre associée à v. Cette dernière équation est appelée « équation aux valeurs propres ».
Carrier-to-noise ratioIn telecommunications, the carrier-to-noise ratio, often written CNR or C/N, is the signal-to-noise ratio (SNR) of a modulated signal. The term is used to distinguish the CNR of the radio frequency passband signal from the SNR of an analog base band message signal after demodulation. For example, with FM radio, the strength of the 100 MHz carrier with modulations would be considered for CNR, whereas the audio frequency analogue message signal would be for SNR; in each case, compared to the apparent noise.
P (complexité)La classe P, aussi noté parfois PTIME ou DTIME(nO(1)), est une classe très importante de la théorie de la complexité, un domaine de l'informatique théorique et des mathématiques. Par définition, un problème de décision est dans P s'il est décidé par une machine de Turing déterministe en temps polynomial par rapport à la taille de l'entrée. On dit que le problème est décidé en temps polynomial. Les problèmes dans P sont considérés comme « faisables » (feasible en anglais), faciles à résoudre (dans le sens où on peut le faire relativement rapidement).
Logarithme d'une matriceEn mathématiques, et plus particulièrement en analyse, un logarithme d'une matrice est une autre matrice telle que son exponentielle soit égale à la matrice initiale. C'est une généralisation de la notion usuelle de logarithme, considéré comme inverse de la fonction exponentielle, mais le logarithme n'existe pas pour toutes les matrices, et n'est pas unique en général. L'étude du logarithme des matrices conduit au développement de la , car les matrices ayant un logarithme appartiennent à un groupe de Lie, et le logarithme est alors l'élément correspondant de l'algèbre de Lie associée.
Matrice par blocsvignette|Un matrice présente une structure par blocs si l'on peut isoler les termes non nuls dans des sous-matrices (ici la structure « diagonale par blocs » d'une réduite de Jordan). On appelle matrice par blocs une matrice divisée en blocs à partir d'un groupement quelconque de termes contigus de sa diagonale. Chaque bloc étant indexé comme on indicerait les éléments d'une matrice, la somme et le produit de deux matrices partitionnées suivant les mêmes tailles de bloc, s'obtiennent avec les mêmes règles formelles que celles des composantes (mais en veillant à l'ordre des facteurs dans les produits matriciels!).